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ABSTRACT

Experiments were performed on a low-speed multistage axial-flow compressor to

assess the effects of shrouded stator cavity flows on aerodynamic performance. Five

configurations, which involved changes in seal-tooth leakage rates and/or elimination

of the shrouded stator cavities, were tested. Data collected enabled differences in

overall, individual stage and the third stage blade element performance parameters to

be compared. The results show conclusively that seal-tooth leakage can have a large

impact on compressor aerodynamic performance while the presence of the shrouded

stator cavities alone seemed to have little influence. Overall performance data revealed

that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure

rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed

efficiency penalty slopes are comparable to those commonly reported for rotor and

cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly

predict overall performance it is equally important to account for the effects of seal-tooth

leakage as it is to include the influence of tip clearance flows. Third stage blade element

performance data suggested that the performance degradation observed when leakage was

increased was brought about in two distinct ways. First, increasing seal-tooth leakage

directly spoiled the near hub performance of the stator row in which leakage occurred.

Second, the altered stator exit flow conditions caused by increased leakage impaired

the performance of the next downstream stage by decreasing the work input of the

downstream rotor and increasing total pressure loss of the downstream stator. These

trends caused downstream stages to progressively perform worse.

Other measurements were acquired to determine spatial and temporal flow field

variations within the up-and-downstream shrouded stator cavities. Flow within the

cavities involved low momentum fluid traveling primarily in the circumferential direction

at about 40% of the hub wheel speed. Measurements indicated that the flow within both

cavities was much more complex than first envisioned. A vortical flow structure in

the meridional plane, similar to a driven cavity, existed within the upstream cavity.

Furthermore, other spatial and temporal variations in flow properties existed, the most

prominent being caused by the upstream potential influence of the downstream blade.



This influence caused the fluid within cavities near the leading edges of either stator

blades in space or rotor blades in time to be driven radially inward relative to fluid near

blade mid-pitch. This influence also produced large unsteady velocity fluctuations in the

downstream cavity because of the passing of the downstream rotor blade.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Leakage flows exist in turbomachines. They are normally created by pressure

differences across open clearances or channels in which fluid is driven from high to low

pressure regions. Leakage flows may be extracted from or injected into the power stream

from secondary flow paths. They also arise at the interface of rotating and stationary

members within or near individual blade rows. In general, when not accounted for in

the design process, leakage flows alter the blockage and loss distributions in the primary

flow path which in turn may lower the effectiveness and efficiency of a turbomachine.

Axial-flow compressors have leakage in a number of places. Figure I. 1 shows a few

of these locations within a modem high pressure core compressor. In the past, rotor

blade tip clearance leakage has been most commonly studied and the large number of

recent reports on this topic indicate the subject is still important. Studies which detail the

impact of other kinds of leakage flows on compressor performance have been reported

to a much lesser extent. These flows include shrouded blade seal-tooth leakage, rotor

dovetail leakage, variable stator pivot / clearance leakage and customer bleed. All of

these and other types of leakages which are present in gas turbine engines have been

thoroughly documented by Ludwig [1] and Wisler [2].

The negative impacts of some of the above mentioned leakage flows on compressor

performance have been well documented over the years. For example, the increase of

rotor tip clearance leakage leads to a reduction in stage pressure rise, efficiency and flow

range. For rotor blades with normal operating clearances a general rule is to expect a

1.5 point reduction in efficiency for every 1% increase in the clearance to blade-height

ratio [1,3]. The reduction in stall margin can be as great as 6% for every 1% increase

in clearance to chord ratio [2]. These are substantial penalties for engine manufacturers

and users to endure. For multistage compressors, the cumulative impact of leakage on

performance can be even more significant, since not only is performance degraded, but

stage matching becomes altered from the design intent.

Problems associated with leakage flows become even more critical for at least two

reasons. First, clearances increase because of wear. Airline reports indicate that engine

specific fuel consumption increases over time. Periodic overhauls of these engines do not

fully recover the reduction in performance. This deterioration has been blamed on wear

of blades and seals which open clearances and in turn allow more leakage. Second, trends

in aircraft engines toward highly loaded stages [4] and low aspect ratio blading [5] result

in leakage flows becoming increasingly influential on compressor performance. Highly

loaded stages imply more leakage for the same geometric clearances and lower aspect



ratiobladescancreatestrongersecondaryflows which in turn force a largerpercentage
of thebladeto beaffectedby leakage.Furthermore,higherpressuredifferencespromote
faster erosionof the bladesand seals.

In axial-flow compressors,designerscommonly consider two options for the
constructionof statorblades:cantileveredairfoils or hub shroudedairfoils. Illustrations

of eachof theseconfigurationsare shownin Figure 1.2. Both optionsproduceleakage
flows; however,the typesof leakagegeneratedaredifferent in nature.

Cantileveredairfoils (Figure1.2a)areconnectedat the casewhile at the hub they
remainfree. Sincestatorsarestationaryandthehubendwallrotates,a runningclearance
is presentat the hub interface.This clearanceallows flow leakageacrossthe end of the

/

A
E

--B

A. Rotor tip clearance leakage D. Variable stator pivot leakage

B. Shrouded stator leakage E. Variable stator clearance leakage

C. Dovetail leakage F. Customer bleed

Figure 1.1 Leakage paths within an axial-flow core compressor.



airfoil. Theleakageis drivenby thepressuredifferentialacrosstheblade.Unfortunately,
cantileveredbladesrequirerelatively largehub-to-endwallclearancesin order to avoid
rubs and possiblecatastrophicdamage.Large clearancescan causelarge amountsof
leakage. Furthermore,since the stator hub end is free, cantileveredbladesmay be
susceptibleto vibration problems.

Shroudedstators(Figure 1.2b)areconnectedat both the caseand hub. To fix the
hub end,the bladesarenormally pinnedto an annularfoot-ring which is concentricto
the rotor. The pinnedhub reducesthe risk of vibrationswhich therebyalso allows the
airfoils to be thinnerthantheir cantileveredcounterparts,bothconsideredasattributesto
designers.To accommodatethefoot-ring,a cavityexistsin therotor drum. Thefoot-ring
is immersedin the cavity and thereforetransparentto the primary flow path. Sincethe
statorrow producesa staticpressurerise and the cavity allows a leakagepath, fluid is

(

rotor

hub

casing

stator rotor

stator hub clearance

a) cantilevered stator blades

rotor stator

casing

rotor

labyrinth seal-teeth _ seal-tooth clearance

b) hub shrouded stator blades

Figure 1.2 Options for the construction of stator blades.
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normally driven through the foot-ring cavity from the trailing edge opening to the leading

edge opening. This is in the reverse direction of the primary flow. Multiple labyrinth

seal-teeth and special design of the cavities are required to minimize gas recirculation

through the cavity.

The decision to cantilever or shroud stators is generally a mechanical choice.

Structural integrity objectives such as keeping the first flex, first torsion and two-

strip frequencies out of the operating range [2] usually outweigh any aerodynamic

considerations. Shrouding usually provides the mechanical stability desired and therefore

modem gas turbine engines typically employ shrouded stator blades. The choice to

shroud of course eliminates the troubles associated with hub clearance leakage flows

found with cantilevered stator blades, but replaces them with the difficulties of shrouded

stator leakage flows.

Researchers have briefly commented on the influence of shrouded stator seal tooth

leakage on compressor performance. Some published examples are given by Jefferson

and Turner [6], Mahler [7], Freeman [3] and Wisler [2]. Jefferson and Turner provided

an excellent review which detailed the effects of shrouding stator blades, which were

originally cantilevered, on the performance of an industrial multistage compressor.

Unfortunately, the blading and type of shroud used in their study were not typical of

what is currently used in engines today. Mahler reviewed tests conducted on a multistage

research compressor with two-lipped interstage labyrinth seals in which the seal clearance

was varied. A relation was developed from the measured data which correlated efficiency

to the seal-tooth clearance. Estimates of this correlation for current fighter and transport

engines were also provided. All data showed a reduction in efficiency as seal-tooth

clearance was increased. These trends are reproduced in Figure 1.3. Note that the

correlations are all dissimilar because of the different leakage characteristics of the seals

employed for each implementation. Freeman presented data taken from a two-stage

low reaction compressor in which clearance amounts were changed for shrouded blades

having either deep or shallow cavities. Those measurements also suggested a loss in

efficiency, shown in Figure 1.4, with an increase in seal-tooth clearance. The depth of

the cavity did not greatly impact the results. Wisler also hinted at the importance of

seal-leakage flows when he reported a 2.3 point reduction in efficiency and a 10.3%

decrease in the average pressure rise of a four-stage multistage compressor when both

rotor tip and labyrinth seal-tooth clearances were increased. Although both of these

clearances usually deteriorate together in an engine (as noted by Wisler), by changing

both clearances simultaneously it is difficult to determine the influence of seal-tooth

leakage alone on overall performance. Finally, no known literature addresses how the

presence of the up-and-downstream shrouded stator cavities alone impact multistage

compressor performance.
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Figure 1.3 Penalty in efficiency with increased seal-tooth clearance (from Mahler [7]).
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Although pastexperiencehasrevealedthat seal-toothleakageaffects the efficiency
of a compressor,few detailshave beenpublishedregardingthe changesin the power
streamflow field which occur when seal-toothleakageis present. Furthermore,even
fewer detailsaregiven about the characterof the flow within shroudedstatorcavities.
Adkins and Smith [8] suggestedthat shroudedbladeendwall leakageentersthe power
streamwith little meridionalvelocity and becomesentrainedby the main flow. Limited
data presentedin the samearticle indicated that leakagecauseda reduction in the
circumferentiallyaveragedstatorturning of the flow. It waspostulatedthat this wasdue
to a weakenedsuctionsurfaceboundarylayer, possiblycausedby the leakageflow. In
a separatearticle concernedwith secondaryflows in turbomachinery,Wisler et al. [9]

demonstrated that increasing seal-tooth leakage enhanced flow overturning very near the

hub. They also hinted that at high loading levels, increasing leakage relieved the suction

side vane boundary layer. This appears to be contrary to the hypotheses advanced by

Adkins and Smith. More recently, LeJambre et al. [10] have shown in a multistage

compressor calculation that extra hub blockage develops in the power stream because

of the entrained leakage flow. Even with these examples, it remains unclear how the

presence of shrouded stator flows influence the power stream flow property distributions.

This lack of understanding is obviously a barrier for compressor designers.

It is not surprising to find that a review of open literature suggests designers may not

always model shrouded stator flows or specifically account for the effects of these flows

in design throughflow calculations. Adkins and Smith [8] have discussed the possibility

of modeling the entrained leakage flow as an upstream vorticity source entering the stator

blade row and therefore subject to the development of secondary flow which augments

the spanwise and pitchwise movement and mixing of fluid particles. Assuming the

shrouded stator leakage flow enters the primary flow as a boundary layer collateral to the

freestream flow, secondary flow velocities are calculated from the secondary vorticity in a

fashion similar to those for typical endwall boundary layer flows (details can be found in

[8] and [11]). To include the result of reduction in flow turning with increased seal-tooth

leakage, a relation is used which correlates the change in stator turning to the change

in circulation. Circulation is in turn empirically correlated to the amount of known

leakage flow through the seal-tooth. The implementation of this model into a design

calculation showed fair agreement between predicted and test data. The trend of increased

flow deviation with increased leakage was established and in general the departure of

the measured flow angles from the calculated flow angles showed the model worked

reasonably well; however, the calculated stator total pressure loss near the hub was not

in good agreement with test data. The model employed considerably overestimated the

magnitude of total pressure loss from 5-20% stator span and underestimated it from

0--5% span. In a separate study, Denton [12] also concluded that a lack of experimental

data has hindered the modeling of loss mechanisms associated with seal-tooth leakage.



The only fair agreement between the Adkins-Smith model and measured data combined

with the lack of any other published data indicate that a systematic study detailing the

influence of shrouded flows could be beneficial to engineers who want to better account

for these flows in the compressor throughflow design process.

Computational fluid dynamics is being increasingly used for turbomachinery design.

Advancements in computer speeds, storage capacities and computational methods have

allowed engineers to move away from simple single blade row calculations to include

the effects of multiple stages, three dimensional blade geometries, off-design operation

and various leakage flows. The importance of including the effects of shrouded stator

leakage flows in the design of a multistage compressor was given by LeJambre et al.

[10] For these calculations the cavity flow was modeled as a simple flow extraction at

the stator trailing edge and injection at the leading edge (few details of the simple model

were given). Changes to the original axisymmetric axial velocity distribution occurred

when the cavity model was employed. Furthermore, the work input of the downstream

rotor better matched experimental data when the cavity model was applied. A separate

computational effort performed concurrently with this investigation (Heidegger et al.

[13]) has started to systematically investigate the influence of a variety of shrouded

stator geometric parameters on stator blade performance. This parametric study has

been beneficial to the work reported herein and upon completion may prove to be

valuable for designers. Unfortunately, as with all new design tools, the accuracy of

the computed results remain in question until thoroughly validated. A consistent set of

experimental data detailing the effect of shrouded stator flows on multistage compressor

flow fields would therefore be beneficial to designers in order to assess the accuracy of

computational fluid dynamic results.

In summary, the mechanical based decision to shroud stator blades in axial-flow

compressors produces shrouded stator cavity flows. A primary component of these cavity

flows results from leakage through labyrinth seal-teeth. Although seal-tooth leakage has

been shown to reduce compressor efficiency, only limited data are available which

detail changes in the primary flow field when this leakage is present. Furthermore, no

known study addresses how or if the shrouded stator cavities alone impact compressor

performance. This general lack of knowledge concerning shrouded stator cavity flows can

severely limit engineers who use throughflow or computational fluid dynamics methods

in their design of axial-flow compressors.



CHAPTER II

OBJECTIVES AND APPROACH

The objectives of this study stemmed from the general lack of present knowledge

concerning the effects of shrouded stator cavity flows on multistage axial-flow compressor

aerodynamics as reviewed in Chapter I. The overall objectives of this study are 1)

to quantify the importance of shrouded stator cavity flows on the performance of a

multistage compressor, 2) to specifically describe how shrouded stator cavity flows effect

the performance of an embedded stage and 3) to provide information about the flow

field within shrouded stator cavities.

The intent of the objectives is to answer a broad range of questions concerning

how compressor performance values are altered when either shrouded stator cavities or

seal-tooth leakage rates are modified in the stages of a multistage compressor. The first

objective was set to demonstrate that shrouded stator flows really do affect compressor

aerodynamic performance. Completion of this objective gave a reasonable guess at the

performance penalties which could be expected in a core compressor when shrouded

stator flows change. The second objective was established to better understand what

influence shrouded stator flows have on the power stream flow. Completion of this

objective helped to explain how the observed changes in overall performance value

occurred, provided detailed information on important changes in the power stream flow

field and also gave insight into how shrouded stator cavity flows may effect stage

matching. The third objective was chosen since little is known about the details of

shrouded stator cavity flow fields. Completion of the third objective could help engineers

better model shrouded stator cavity flows in designing of axial-flow compressors.

Achievement of the objectives was completed by performing tests on a four-stage

low-speed axial-flow compressor. For the first two objectives, two separate experiments

were completed. In the first one, labeled Part 1, modifications to the shrouded stator

cavity flows were incorporated on all four stages of the compressor. In the second,

Part 2, alterations were made only to the third stage cavity flows while the other stages

were kept at the baseline condition. In both experiments, measurements were taken

which allowed overall, individual stage and blade element performance parameters to

be calculated. Comparison of these data answered questions relating to the first two

objectives. To achieve the third objective, detailed pressure and velocity distributions

within the shrouded stator cavities were acquired with pneumatic and hotfilm probes.



CHAPTER HI

EXPERIMENTAL FACILITY

The NASA Lewis ResearchCenterLow-SpeedAxial Compressor(LSAC) facilitY
is describedin this chapter.Stagebladegeometryparametersarealsospecified.Further
details of the LSAC facility may be found in Wasserbaueret al. [14] Information

concerning the probe calibration facility maybe found in Appendix B.

Large Low-Speed Axial-Flow Compressor Test Facility

An illustration of the NASA Lewis Research Center Large Low-Speed Axial-Flow

Compressor (LSAC) is shown in Figure 111.2. A detailed meridional view of the third

stage is shown in Figure III.1. Relevant design parameters are listed in Table UI.1. The

LSAC was modeled after the GE Low-Speed Research Compressor, which has been used

for improving multistage compressor design and technology for the past forty years. The

blading, presented in the next section, was modeled after a design used to develop the

Energy Efficient Engine. Some important blading parameters are also given in Table III. 1.

In line with GE's philosophy, the LSAC incorporated many common features in

an attempt to achieve an accurate low-speed simulation of a high speed multistage

compressor. A long entrance length was used to develop thick endwall boundary layers

typical of an embedded stage. An inlet-guide vane row was used to generate exit flow

angles similar to what the embedded stators would produce. Four repeating stages (stages

with identical blade geometry) were used. The first two stages were assumed to set up a

repeating stage environment. The third stage was considered the test stage. The fourth

stage continued the repeating stage environment and buffered the third stage from the

compressor exit conditions. For each of the stages, the stators were shrouded with one

labyrinth seal-tooth in the shrouded stator cavity and were sealed at both the hub and

case blade tip interfaces.

Stage Blade Geometry

The blading used for all tests were based on the Rotor B / Stator B geometry

designed by General Electric, under Contract NAS3-20070, and tested in their Low-

Speed Research Compressor. The GE blades were designed to reduce loss in the endwalls

of a representative core compressor. Complete details of the original designs were given

by Wisler [15]. Some simple modifications to original geometry were incorporated into

the NASA blades because of the differences in the hub-to-tip ratios of the two facilities.

A description of the blades, the changes that were made to the original GE geometry
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and the spanwise variations, presented as percent span from the hub, of both NASA's

and GE's blading parameters are presented.

Rotor Blades

A photograph of the rotor blade is given in Figure 1II.3. Blade profiles at 10, 50

and 90% span are shown in Figure III.4. The rotor consisted of airfoil sections having

modified circular-arc meanlines with 2 ° and 6 ° overcambering at the leading and trailing

edges. The stacking axis was at 50% chord. Modified circular-arc thickness distributions

were used. At the tip maximum thickness was at 60% chord. This blended to 50%

chord at the pitchline. These deviations from standard circular arc distributions helped

to increase the loading level at the tip and trailing edge of the rotor blade.

Radial distributions of rotor solidity and aspect ratio are illustrated in Figure III.5. The

aspect ratios for each blade were kept constant along the span (AR ,_ 1.2). However,

since the hub-to-tip ratios of the two facilities were different, radial distributions of

solidity could not be identically matched. No modifications were incorporated into

NASA's geometry to account for differences in deviation and/or secondary flow which

could arise due to the differences in solidity. The radial distributions of rotor leading

edge, trailing edge and setting angles are depicted in Figure III.6. NASA's angles match

casing

0

0

r_

rotor 3

hub

tt'3

o5
t-
O

r_

stator 3

foot-ring

t-
O

Figure III.1 Meridional view of the third stage of the LSAC.
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Table III. 1 Baseline parameters for the Low-Speed Axial-Flow Compressor.

Casing radius

Hub radius

Hub-to-tip ratio

Blade span

Rotational speed

Rotor tip speed (based on casing radius)

Mass flow

Axial velocity

Pressure ratio

Temperature ratio

Flow coefficient,

Average pressure rise coefficient, (.,//4

Average work coefficient, _/4

Nominal axial gap

Number of blades

Rotor

Stator and IGV

Midspan aerodynamic chord

Rotor

Stator

Midspan blade setting angle

Rotor

Stator

Clearances

Rotor tip

Stator shroud labyrinth seal

60.96 cm

48.8 cm

0.80

12.19 cm

958 rpm

61.15 m / s

12.3 kg / s

24.4 m/s

1.042

1.013

O.400

0.500

0.550

2.54 cm

39

52

10.2 cm

9.4 cm

43 °

42 °

1.7 mm (1.4% span)

0.85 mm (0.70% span)
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GE's angles at the hub, but not at the tip. This departure from the original design was

incorporated in order to account for the different hub-to-tip ratios and attempted to keep

velocity triangles the same across the span between the two geometries.

Stator Blades

A stator blade is shown in Figure HI.7. As seen, the stators employ end-bends at

both the hub and case. Blade profiles for 10, 50 and 90 % span are illustrated in Figure

III.8. The stator consisted of airfoil sections having 65-series thickness distributions

on a modified circular-arc meanline. Leading edge overcambering (3.5 °) was needed in

order to achieve representative suction surface velocity distributions. No trailing edge

overcambering was incorporated. As explained by Wisler [15], the type of twist used in

the stator could lead to large acute angles at the leading edge where the suction surface

meets the endwalls. Conversely, large obtuse angles could occur near the trailing edge.

In order to prevent this, the airfoil sections were stacked at the 30% chord location,

instead of the usual 50%.

Radial distributions of stator solidity and aspect ratio are illustrated in Figure Ill.9.

Aspect ratio distributions were matched while solidity distributions were allowed to vary.

Again, no modifications were incorporated to NASA's stator geometry for differences

in deviation and/or secondary flow which could arise because of the differences in

solidity. The radial distributions of stator leading edge, trailing edge and setting angles

are depicted in Figure 111.10. As with the rotor, to keep the velocity triangle distributions

the same across the span, NASA's geometry employed a linear twist from hub to tip

which increased the tip angles by about 1.2 °.
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Figure ffI.3 Low-speed axial-flow compressor rotor.
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Figure III.4 Rotor airfoil sections at 10, 50 and 90% span.
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Figure 111.7 Low-speed axial-flow compressor stator.
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Figure III.8 Stator airfoil sections at 10, 50 and 90% span.
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CHAPTER IV

DATA REDUCTION AND ANALYSIS PROCEDURES

Overall Performance Parameters

Overall performance data include the compressor pressure rise characteristic, work

coefficient and efficiency deduced from static pressure and shaft torque measurements.

These are all given with respect to flow coefficient, defined as the mean inlet velocity

normalized by the tip speed. The discussion of overall performance parameters follows

closely that presented by Wisler [16] but is included here for completeness.

Flow coefficient was computed from the measured airflow using Equation IV.1.

The massflow rate (rh) was calculated from Equation IV.2 where Cd represents a

previously determined discharge coefficient dependent upon the Reynolds number and

rhld represents the theoretical one-dimensional massflow rate. The density and velocity

at Station 0.1 were determined from compressible flow relations assuming isentropic

flow from the bellmouth and constant static pressure at Station 0.1. Stagnation properties

for Equation IV.2 were obtained from the reference conditions measured upstream of

Station 0.1, while the static pressures were taken from an average of casing and hub

pressure measurements at Station 0.1.

rh
= (iv.l)

Prey A0.1 Utip

= Cd rhld = Ca (p0.1 A0.1 W0.1)l d (IV.2)

The pressure rise coefficient is defined by Equation IV.3. Here, _b/ truly represents

an isentropic enthalpy rise: however, the rise in enthalpy was calculated from the pressure

rise as given in Equation IV.4. For this calculation it was assumed that the rise in static

pressure equaled the rise in stagnation pressure. The average inlet and outlet pressure

measurements were obtained from casing and hub static taps positioned ahead of the

first rotor and behind the last stator.

_'/ -- (Hgut - H;° )isen (IV.3)

12

( ",t--1 ]

o _ 7 (P, ey _ Pout_ -7- 1 (IV.4)
(H°_'t - H"_)'se'_ 7- 1 \Prey / [ k, Pin J -

The work coefficient is defined in Equation IV.5. The actual enthalpy rise was

calculated using Equation IV.6. Here, Tq is the measured torque while Tqtare is the tare

torque which was previously determined.
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¢ = (Ho°,,, - H°n)

!2
(rv.5)

(HOout _ HO ) = (Tq - Tqta,'e) w gc (IV.6)

The efficiency was calculated by taking the ratio of the pressure rise coefficient to

work coefficient (Equation IV.7).

zp/

77= -_- (IV.7)

Individual Stage Performance Parameters

Stage performance data include stage pressure rise characteristics along with radial

distributions of stage pressure rise coefficient, work coefficient and efficiency. Pressure

rise characteristics were deduced from casing static pressures, while stage performance

parameters were obtained from pneumatic probe measurements.

The stage pressure rise characteristics were calculated by using Equation IV.4, where

the inlet and outlet conditions corresponded to the appropriate static pressures for each

stage. As with overall performance parameters, the stage characteristics are given with

respect to inlet flow coefficient. Note that the inlet flow coefficient corresponds to the

inlet of the machine and not the inlet to a particular stage. Hence, no corrections to

the data were made which accounted for differences in the local flow coefficient which

were caused by density changes. A quick analysis, assuming a 100% efficient machine

at peak pressure, showed that the maximum discharge density was only 1.8% higher than

the inlet density. Therefore, only small changes to the slope of the stage characteristics

were expected due to changes in the local flow coefficient.

Stage performance parameters were defined exactly as overall performance param-

eters. Radial distributions of these parameters were obtained by circumferentially mass

averaging appropriate flow quantities obtained from pneumatic probes. For the stage

pressure rise coefficient, total instead of static pressures were used to set the outlet-to-

inlet pressure ratio in Equation IV.4. Euler's equation (Equation IV.8) was employed

across a rotor to determine the actual enthalpy rise in Equation IV.6.

(H°_,, - H_,,) = (UVo)o_,t - (UVo)in (IV.S)

Radial movement of fluid particles through the rotor was accounted for when using

Euler's equation. Therefore, inlet and outlet values of wheel speed and tangentail

velocity in Equation IV.8 correspond to the same streamline. Spanwise shifting of
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streamlineswasdeterminedfrom the measureddistributionsof axial velocity. Velocities
were computedfrom measuredtotal pressures,static pressuresand flow anglesusing
compressibleflow relations. Total pressureswere measuredwith miniaturekiel-headed
probes. Wedgeprobeswere usedto acquirethe static pressureand flow angleat each
radial and circumferentialposition.

Blade Element PerformanceParameters

Blade elementperformancedataprovide two-dimensionalcascadeparametersand
stagevectordiagramquantities. All valueswere calculatedfrom total pressures,static
pressuresandflow anglesmeasuredin a matrix of circumferentialand radial positions.
Data was taken at the rotor inlet, stator inlet and stator dischargefor the third stage.
Theselocationscorrespondto Stations3.0, 3.5 and4.0 respectivelyasshownin Figure
Ill. 1.Totalpressureswereacquiredwith a miniaturekiel-headprobe.Staticpressuresand
flow anglesweregatheredwith wedgeprobes.SeeAppendixB for a detaileddiscussion
of probecalibrationanddatareductionproceedures.Appropriateabsoluteflow quantities
wereeitherareaor massaveragedacrossone statorpitch to give theradial distributions
of the circumferentiallyaveragedflow. For rotor performance,total pressureswerefirst
convertedto the relativeframe at eachmeasurmentlocation andthenaveraged.

Inlet andoutlet vectordiagramquantitiesarepresentedfor both therotor andstator.
Velocitiesandflow anglesareshownrelativeto theblade in question.Velocitiesat each
measurementlocation were calculatedfrom the measuredpressuresusingcompressible
flow relations. To calculatevelocities, the pressureswere correctedto standardday
conditionsandthetotal temperature(standarddaycondition) wasassumedto beconstant
acrossthe span. Velocity componentsat eachposition were found by multiplying the
velocity magnitudewith the appropriatetrigonometricfunction of the measuredflow
angle. The circumferentialaveragedaxial velocity was found from areaaveragingthe
axial velocity while the tangentialvelocity wasmassaveraged.The averagedvelocity
magnitude(EquationIV.9) and flow angle (EquationIV. 10) were calculatedfrom the
areaaveragedaxial velocity and massaveragedtangential velocity. Relative velocity
triangle valuescorresponeddirectly to the averagedabsolutevaluesthrough the local
wheel speed.

_= tan-1 (V--_)
(iv.lo)
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The two-dimensional cascade parameters presented are incidence, deviation, turning

angle, diffusion factor, loss coefficient and loss parameter. Radial distributions of

turning angle were calculated from the axisymmetric inlet and exit flow angles. The

diffusion factor, defined in Equation IV. 11, was determined from the appropriate averaged

velocities. For the loss coefficient (Equation IV. 12) the inlet and outlet total pressures

were mass averaged across one stator pitch, while the static pressure was simply area

averaged. When presenting circumferential distributions of loss coefficient the outlet

total pressures were not averaged, but the inlet pressure values were. The loss parameter

(Equation IV.13) is as given in Reference [17].

Vout A_o
DF=I _ +__ (IV.11)

Win 2o'Win

"-_in-- P°o--="mut

P°in - --flirt

a

(IV.12)

(IV. 13)

Seal-Tooth Leakage Rate Estimation

To estimate the maximum leakage through the labyrinth seal for a given clearance,

Equation IV. 14 was used. For this estimation, the nominal clearance gap and the upstream

and downstream static pressures, measured by static pressure taps on the foot-ring, were

known. The discharge coefficient, Cd, was found from Equation IV.15, which was taken

from Reference [7].

rfi_.._t= Cd ( A_/A ) _/Cpl -Cp2 (IV.14)
r'n V/I _ (A_/A1)2 ¢

Cd= 0.102 log(!)+0.719 (IV.15)

Equation IV.14 was derived by applying the conservation equations to the control

volume defined in Figure IV. 1. In the derivation flow was assumed to be incompressible

and traveled isentropically from position (1) to the seal-tooth contraction. The static

pressure distributions across the control volume inlet and outlet boundaries were

considered uniform. The static pressure at the seal-tooth contraction equaled the static
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pressure measured at (2). Finally the whirl was assumed constant from (1) to the

seal-tooth contraction.

foot-ring
II (_) 14=--

(2)__A_\_ (1)-

..... m.

rotating hub control volume

Figure IV. 1 Schematic for seal-tooth leakage rate estimation.
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CHAPTER V

CONFIGURATIONSTESTED

To fulfill theobjectivesof this studyfive compressorconfigurationsweretested.For
eachof theseconfigurations,changeswere madeto the shroudedstator hub geometry
which either modifiedthe leakageratethroughthe labyrinth tooth sealor removedthe
presenceof the shroudedstatorcavitiesaltogether.For the first setof tests,Part 1, these
modificationswere incorporatedon all four stagesof the compressor.For the second
set of tests,Part2, alterationswere madeonly to the third stagewhile the otherstages
(1,2 and4) werekept at the baselineconfiguration. The configurationswerechosento
give the following cases:

1. No shroudedstatorcavitiesandno labyrinth seal-tooth
leakage(No cavity / No leakage)

2. Minimized labyrinth seal-tooth leakage with shrouded

stator cavities (Minimized leakage)

3. Baseline labyrinth seal-tooth leakage with shrouded

stator cavities (Baseline leakage)

4. Increased labyrinth seal-tooth leakage with shrouded

stator cavities (Increased leakage)

5. Maximum labyrinth seal-tooth leakage with shrouded

stator cavities (Maximum leakage)

These modifications to the shrouded stator geometry are illustrated in Figure V. 1. For

the no cavity / no leakage configuration (Figure V. 1a) wood extensions were attached to

the stator foot-ring in order to remove the presence of the shroud cavities. In an attempt

to eliminate seal-tooth leakage, a balsa strip was adhered to the foot-ring and the labyrinth

seal-tooth was shimmed outwards. In theory this produced zero (or negative) clearance

between the balsa strip and seal-tooth. In practice this created the minimum clearance

attainable with this facility, since the seal-tooth wore into the balsa strip which generated

a small clearance between the balsa and seal-tooth. This clearance was made somewhat

larger due to 1) the lifting and axial movement of the rotor drum from rest to operating

condition and 2) the machining tolerences and runout of the rotor drum and annular

foot-ring. (It must be noted that foam face-seals were also tried in the rig to eliminate

leakage, but these failed miserably.) For this configuration, the seal-tooth clearance

was always the smallest of all throttling points in the shrouded stator cavity (the other

two created by the wood extensions). For the minimized leakage configuration (Figure

V. l b), the wood extensions were removed and the compressor was reassembled with the

balsa strip and shimmed seal-tooth still in place. It is important to remember that some
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seal-tooth clearance was present for this configuration. The other three configurations

(Figure V.lc) were attained by simply adjusting the shimmed seal-tooth height until

the proper seal-tooth clearance was obtained. For these three configurations the balsa

strip was removed from the foot-ring and replaced with a strip of cherry wood, thereby

eliminating any wear which previously occurred on the bottom of the foot-ring. Finally,

all configurations were tested with stator blade ends (interface between the blade tip and

case and the blade hub and annular foot-ring) sealed.

a)

extensions

hub foot-ring

mr-

seal-tooth _ _ _- balsa

shim

b)

hub foot-ring

j
seal-tooth _ _ _-- balsa

shim

c)

hub foot-rin

seal-tooth _ _ _ cherry
L____ shim

Figure V. 1 Illustrations of configurations having a) no cavity with no leakage, b) cavity

with minimized leakage and c) cavity with baseline, increased and maximum leakage.
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TableV.1 Measuredseal-toothclearancesfor thefirst setof testsconductedon theLSAC.

Configuration

No cavity / No leakage

Minimized leakage

Baseline leakage

Increased leakage

Maximum leakage

Stage 1

0.54

0.54

0.67

1.35

2.02

Seal-Tooth Clearance,

Stage 2

0.19

0.19

0.42

1.13

1.79

Stage 3

0.21

0.21

0.69

1.29

1.96

e/h,%

Stage 4

0.06

0.06

0.46

1.17

1.83

Nominal

0.25

0.25

0.56

1.23

1.90

Table V.2 Measured seal-tooth clearances for

the second set of tests conducted on the LSAC.

Configuration

No cavity / No leakage

Minimized leakage

Baseline leakage

Increased leakage

Maximum leakage

Stage 3 Seal-Tooth Clearance, c / h, %

0.46

0.46

0.71

1.23

1.96

For both sets of experiments, seal-tooth clearances were measured statically at the

12 and 6 o'clock positions before and after each configuration change. The casing was

composed of two halfs with the the split line running vertically. Removal of one half

of the casing therefore allowed the easy measurement of clearances. These measured

clearances are listed in Table V.1 for the first series of tests and in Table V.2 for the

second series of tests. The values are nondimensionalized by the blade span (12.19 cm)

for convenience. Both tables indicate that for each individual stage, the no cavity / no

leakage clearance was equal to the minimized leakage clearance. This is because the same

balsa strips and seal-tooth shims were used for these two configurations. Table V. 1 shows

for a given configuration the clearance values varied greatly between all four stages. This

was caused by machining tolerances on the rotor and foot-ring concentricities and run-out

of the cantilevered rotor drum. To obtain mean values, averages were taken for all four

stages. These averages are represented by the nominal values given in TableV. 1.

An analysis was conducted to correlate the changes in the seal-tooth clearance to the

changes in seal-tooth leakage massflow. Figure V.2 displays the results of the analysis
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for two operating conditions (near peak efficiency and increased loading). Here, the

percent normalized massflow (estimated by Equation IV. 14) is plotted against the percent

clearance ratio. Each point represents the four stage average of the calculated massflow

values and the measured clearance values for the first experiment (Part 1). For both flow

conditions, the relation between normalized massflow and clearance ratio was nearly

linear, since the discharge coefficient and the difference in pressure across the seal-tooth

varied only slightly with each configuration. The slight inconsistency in slope, between

the two sets of data, resulted from the obvious change in the pressure difference across the

seal-tooth due to the different operating conditions. As shown in Figure V.2, some seal-

tooth leakage was present for the minimized leakage configuration, since a small amount

of clearance was present for that configuration. The no cavity / no leakage configuration

had nearly no mass flowing through the seal-tooth. It appears the extensions, which were

installed on the foot-ring to remove the upstream and downstream cavity (Figure V. 1),

acted as throttling devices and actually reduced the massflow through the seal-tooth even

though the seal-tooth clearance was identical to the minimized leakage configuration

clearance.

Existing literature indicates the ranges of seal-tooth massflow ratio tested were well

within the bounds set by current engine design practice [7]. The baseline configuration

produced a leakage rate (nominally 0.45% of the power stream massflow) which could

be found in aircraft core compressors utilizing current sealing technology [18]. The

baseline leakage rate was also comparable to that quoted by Adkins and Smith [8]. The
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no cavity / no leakage and minimized leakage configurations could represent leakage

rates obtained in advanced sealing technologies such as brush seals [19]. The increased

leakage configuration approximately doubled the baseline clearance (and hence doubled

leakage), while the maximum leakage configuration tripled the baseline clearance. Both

of these cases represent leakage rates which may occur when labyrinth seal-teeth wear.
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CHAPTER VI

RESULTSAND ANALYSIS OF DATA: PART 1

This chapter reviews the overall, stage and blade element performancedata
acquiredwhenconfigurationchangeswheremadeto all four stagesof the compressor
simultaneously.Eachof the five configurationslisted in ChapterV weretested.Overall
and stageperformancemeasurementswere gatheredover most of the operatingrange
of the compressor.The collection of radial and circumferentialdistributions of blade
elementperformancedatawasconcentratedon thethird stageattwo operatingconditions.
Measurementswith modificationsmadeto only the third stagegeometryare discussed
in Chapter VII.

Overall Performance

Overall performancedatawere acquiredto determinethe grosseffectsof seal-tooth
leakageon compressoroperation. Thesedatawere obtainedwhile establishingspeed
lines at the beginningand end of eachrun day. Data were recordedover most of the
operatingrangenear100%designspeed.The resultspresentedfor eachconfigurationare
anarithmeticaverageof sevenseparatesetsof data.Detaileddatauncertaintyestimates
are discussedin Appendix A.

Thesystematicinfluenceof eachconfigurationchangeon thecompressorpressurerise
coefficientis shownin Figure VI. 1. As seen,the compressorcharacteristicwasaffected
over most of the operatingrangeby each configurationchange. Near peak efficiency
(4 = 0.395) a 4% decreasein pressurerise occurredwhen going from no cavity / no

leakage to maximum leakage. At increased loading (q_ = 0.350) the difference was nearly

6%. Figure VI.2 shows that the decrease in pressure rise was nearly linear with respect

to the seal tooth clearance for near peak efficiency and increased loading operation.

Here, the no cavity / no leakage configuration data were used to normalize the decrease

in pressure rise. The no cavity / no leakage configuration was also assumed to be the

zero clearance case.

Figure VI.1 suggests insignificant change in the flow coefficient where stall first

occurred (4 _ 0.295) with the different configurations. For the no cavity/no leakage,

baseline leakage and maximum leakage cases, the data include the last acquired data point

before dropping into stall. The slight differences in the stall inception flow coefficient

for the minimized leakage and increased leakage cases were caused by binding friction

of the throttle sleeve valve which controlled the massflow through the compressor. The

binding of the throttle valve made it extremely difficult to close the valve smoothly (only

at one mechanical position) and hence the compressor would either slowly slide or jump
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into stall after the valve was able to overcome the binding friction. It is unfortunate that

the binding occurred for two of the configurations; however, from the other three cases,

it could be assumed that neither the leakage rate nor the presence of the cavity had much

influence on the stall inception point of this compressor.

The variation in compressor work coefficient with configuration change is given in

Figure VI.3. For the two largest leakage cases there was a noticeable drop in work

input across the entire operating range; however, the basic shape of these curves did not

change. Figure VI.4 shows that the decrease in work input varied nearly linearly with

seal-tooth clearance for two operating conditions. It is interesting to note that work input

and pressure rise both decreased with increasing clearances, with the percentage decrease

in work input about half that of the pressure rise.

The above discussion leads to the conclusion that increasing seal-tooth leakage tends

to decrease efficiency. This is demonstrated in Figure VI.5. The efficiency level was

affected over most of the operating range for each configuration. Near peak efficiency

two points were lost when going from no cavity / no leakage to maximum leakage.

At increased loading a decrease of nearly 2.5 points occurred. Figure VI.6 shows the

expected linear fit of the decrease in efficiency with the increase in seal-tooth clearance.

Figure VI.6 also indicates good consistency with data presented by Ludwig [1] for a

compressor with shrouded stators and multiple (two) non-stepped labyrinth teeth.

Loss in compressor efficiency when rotor and stator endwall clearances are increased

is generally accepted. Many studies have established this. A common rule for rotor

blades is to expect a 1.5 point drop in efficiency for each 1% increase in the tip clearance

to span ratio (a slope of 1.5) [7,1,2,20]. Multistage machines have been reported to

have efficiency penalty slopes as high as 2.0 for changes in rotor tip clearances [1].

For cantilevered stators these slopes range from 1.0 for large clearances (e/h > 1.0%)

to 2.0 for tight clearances (e/h < 1.0%) [7,1,3]. Larger clearances are the norm for

cantilevered stators. The data from this compressor suggest efficiency penalty slopes of

1.0 for seal-tooth clearance changes, which are only slightly lower than most reported

values for rotors and equal to the values reported for cantilevered stators used in practice.

Therefore, when predicting compressor performance, it appears that it is equally important

to account for the effects of seal-tooth leakage as it is to include the consequences of

rotor tip clearance flows or cantilevered stator hub clearance flows.

In the above discussions, reductions in pressure rise, work input and efficiency were

all satisfactorily correlated with increasing seal-tooth clearance. This was done out of

convenience and has, in the past, been favored by many investigators because of its

simplicity and practicality. The clearance was nondimensionalized by the blade span to

also follow past convention. It is important to remember, though, that the aerodynamic

parameter altered by the various configurations was the massflow through the seal-tooth.
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Figure VI.7 Estimated performance improvements

when shrouded stator cavities were removed.

Performance Parameter
Extrapolated Performance Values

Near Peak Efficiency Increased Loading

Pressure Rise Coefficient, _/ 0.30 % 0.45 %

Work Coefficient, _b 0.00 % -0.20 %

Efficiency, r/ 0.10 0.55

Luckily, seal-tooth massflow varied nearly linearly with seal-tooth clearance (Figure V.2),

therefore, performance penalties could also be easily correlated to increasing seal-tooth

massflow.

The shrouded stator cavities themselves appeared to have little influence on the

overall performance of this compressor. This was determined by extrapolating the curves

given in Figures VI.2,VI.4 and VI.6 to zero clearance and hence no seal-tooth leakage.

The vertical intercept of each curve gave an estimation of the effects of the presence

of the shrouded stator cavities alone (without seal-tooth leakage) on the individual

overall performance values since the no cavity / no leakage data was used as the zero

clearance case and since the no cavity / no leakage configuration had virtually no leakage

as demonstrated in Figure V.2. The performance gains which could be expected if

the shrouded stator cavities were removed are listed in Table VI.7 for both operating

conditions. The largest gain in performance would be a 0.45% increase in pressure rise

and 0.55 point increase in efficiency for increased loading operation. Unfortunately, the

scatter and uncertainty in the efficiency data could account for the improvement and

therefore the attribution of the gain to the removal of the cavities could be questioned.

Individual Stage Performances

Stage pressure characteristic data were acquired for the five test configurations for

all four stages. These pressure characteristics were obtained concurrently with overall

performance data. Again, detailed error estimates can be found in Appendix A.

Stage pressure rise characteristics are shown in Figure VI.8. Two trends should

be noted. First, increasing seal-tooth leakage lowered the pressure rise of all stages.

Second, the stage performance degradation became progressively worse in downstream

stages. This is better illustrated in Figures VI.9 and VI. 10, where the percent decrease

in pressure rise is shown for each stage at two operating conditions. Curves representing

the overall performance data are reproduced in these figures as bold face lines. Both

figures suggest a definite trend in which downstream stages suffer more degradation than
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upstream stages. Near peak efficiency the trend was most noticeable at larger clearances

(e/h > 1.0%), while at increased loading operation it was present at all clearance values

It should be noted in passing that two concerns surfaced after studying these stage

data. First, even near peak efficiency the apparent pressure decrease with increased

leakage was large. How much of this decrease can be attributed to the fact that the

inlet flow coefficient instead of the local flow coefficient, which changed for each

configuration, was used as the abscissa? Second, the compressor design intent was to

model a repeating stage environment. Why then, for the same seal-tooth clearance at the

same operating condition, did the performance degradation progressively become larger

in the downstream stages, instead of "leveling out" to a steady value?

The first concern was easily resolved by estimating the maximum possible change in

the local flow coefficient for a given stage at a given operating condition. The analysis

assumed that the local flow coefficient ratio (best case to worse case) was adequately

approximated by Equation VI. 1. This ratio became a maximum when the polytropic

efficiency was 100%, which was an obvious upper bound to the approximation. The

best-to-worse pressure ratio was taken from the compressor discharge static pressure

values. The maximum change in the local flow coefficient was estimated to be less than

0.04%. A value of 0.04% seems quite reasonable, since a similar analysis determined

that the compressor discharge flow coefficient was never larger than 1.8% of the inlet

flow coefficient. Note 0.04% represents an extent much less than the size of the symbols

in Figure VI.8. Furthermore, by assuming a characteristic slope (o_l/oc_) of 2.5, the

corresponding relative pressure change was less than 0.1%. Changes in the local flow

coefficient were thus considered to have negligible effect on the apparent pressure rise

decrease with seal-tooth leakage increase.

(__) (p_o) Pw ""p (VI.1)= =
mtl_;

The second concern was less easily dismissed. Before continuing, it is worthwhile

to point out that the repeating stage environment is a hypothesized model of a multistage

compressor individual stage flow field. The model postulates the velocity, pressure and

temperature distributions leaving a stage are identical to those entering it, although the

absolute levels of pressure and temperature are allowed to increase downstream. The

concept is not new, and the pioneering work by many authors have shown it to be

reasonably accurate. However, it might be presumptuous to assume that just because the

blade geometries of a multistage machine are the same, the repeating stage environment

will naturally develop within a few stages. Smith [21] has discussed at least three build-

ups of a large low-speed four-stage axial-flow compressor which never developed a
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repeating stage environment. The cause was blamed on the deterioration of the hub flow

through all four stages. This deterioration of the hub flow was also believed, although

not proven, to be the cause of the worsening of the performance of the nonrepeating

downstream stages of our compressor.

Third Stage Performance Details

Detailed measurements to calculate the axisymmetric radial distributions of pressure

rise, work input and efficiency for near peak efficiency and increased loading operating

conditions were collected for the third stage only. These parameters were calculated using

slow response pneumatic probe data collected over one stator pitch. Error estimates were

not performed for these radial distributions of performance parameters.

The spanwise distributions of third stage performance data at near peak efficiency and

increased loading operation are displayed in Figures VI. 11 and VI. 12, respectively. Both

figures show a decrease in actual pressure rise (isentropic work input) across the entire

span with increased seal-tooth leakage. Figure VI.12 clearly reveals that for increased

loading the actual work input for the bottom half of the span was unchanged with

increasing leakage, while substantial decreases in the actual work input occurred with

increasing leakage over the upper 50% span. These trends are less clear in Figure VI. 11,

for near peak efficiency. Furthermore, the baseline work coefficient data above 50% span

in Figure VI. 11 are not consistent with the data for the other leakage amounts. This was

caused by a small but uncorrectable error in the rotor discharge velocity measurements.

The data are included in Figure VI. 11 simply to expose the difficulty in obtaining work

input measurements using conventional pneumatic probes. The efficiency distributions

for both operating conditions indicated greatest efficiency reductions near the hub when

leakage was increased. Efficiency distributions near the case were virtually unchanged

provided the baseline data in FigureVI.11 are disregarded.

The radial distributions of stage performance data were mass averaged across the span

in order to obtain representative single-valued stage performance quantities. The results

of these calculations are shown in Figures VI.13 and VI.14. The trends of decreased

pressure rise with increased leakage (Figure VI. 13) are consistent with overall and stage

performance data presented in Figures VI.2,VI.9 and VI. 10. The stage efficiency penalty

data (Figure VI. 14) were a bit more scattered than for overall performance data (Figures

VI.6); however, it was encouraging to find that the efficiency penalty slopes were nearly

the same for overall and third stage data.

Circumferentially Averaged Third Stage Flow Details

Blade element data were gathered to quantify the changes in axisymmetric flow

properties of the third stage with varying leakage. The data also help to explain how
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the overall performance was influenced by each varying leakage. Area surveys with

pneumatic probes were used to obtain these data. Measurements were concentrated in

the inter-blade stations of the third stage with the data acquired in a matrix of 21 radial

and 21 circumferential locations. Clustering of measurements near stator wakes and both

endwalls allowed better definition of flow properties in those regions.

Both rotor and stator blade flow fields were substantially influenced by the amount

of seal-tooth leakage. Data which support this statement are shown in Figures VI.15-
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VI. 18. Rotor and stator data for the near peak efficiency operating condition are shown

in Figures VI. 15 and VI.16, respectively. Data for to the increased loading condition are

presented in Figures VI.17 (rotor) and VI.18 (stator). Similar tendencies in the data at

both operating conditions are apparent. Discussion is therefore a combined view of what

happened in common at both operating conditions. Furthermore, definite trends can be

seen when sequentially viewing data from the no cavity / no leakage to maximum leakage

configurations. Therefore to ease reading, the observed trends are always correlated to

increasing seal-tooth leakage.

At the inlet to the third rotor a large deficit in axial velocity developed near the hub

(5-25% span) when seal-tooth leakage increased while a slight decrease in the relative

tangential velocity occurred over most of the span. Increased blockage near the hub forced

the axial velocity across the rest of the span (30-100%) to increase. The reduction in

the relative tangential velocity did not offset the decrease in axial velocity into the rotor

hub (0-20% span) and consequently the rotor incidence (relative inlet flow angle) at the

hub increased. Across the rest of the span (30--100%), the decrease in tangential velocity

and the increase in axial velocity reduced the rotor incidence angles. These trends are

clarified in Figure VI. 19. Here, schematics of the stage velocity triangles are presented

for the flow near the hub (VI.19a) and across the rest of the span (VI.19b). In Figure

VI.19 note that solid lines correspond to the no cavity / no leakage configuration while

dashed lines represent what occurred when seal-tooth leakage was increased.

The low axial velocity fluid near the hub mixed with surrounding fluid and streamlines

shifted radially as it passed through the rotor and hence the hub blockage was not so

concentrated in one region at the rotor discharge. Still, a substantial axial velocity deficit

existed over the lower half of the span for the two largest leakage cases. For the lower

50% of span, the rotor discharge relative tangential velocity was decreased, while a slight

increase occurred for the upper 50% of span with increased seal-tooth leakage (seen only

in increased loading data). Rotor deviation values (relative exit flow angles) were only

slightly altered with varying leakage, even though moderate variations in rotor incidence

were present across the entire span. It should be noted there were differences in rotor

deviation distributions (20-80% span) for the two operating conditions. Diffusion factor

data show decreased rotor loading for the upper 50% span and increased loading for the

lower 50%. This is consistent with velocity and flow angle data previously mentioned.

It is also consistent with the notion that increased blockage at the hub forces more fluid

to pass above, thereby unloading the tip and loading the hub as seen in Figures VI.11

and VI.12. Some changes in the rotor loss values occurred across most of the span

when leakage changed. Near the tip, no definite trend was observable. Near mid-span,

loss values were raised, while near the hub, they were significantly reduced. Although

startling at first, the decrease in loss near the hub probably represents the radial shifting



41

lO0

._ 80

_ 60

e.

4O

P
_u 20

a)

,O

.'r

E

r.

e_

Z
Ip

ID

c)

E
P

r.

e.

"In

P

e)

o
0.26

.... T ........ , ........

/
0.30 0.36 0.40 0.45 0.50

Axial Velocity In, Vz/Uti p

100

r, 80

E
0
k 60

e-

4O

k

_u 20

o
0.20

b)

I

!

I ....

I jI

!
I

i

0.26 0.30 0.35 0.40

Axial Velocity Out, Vz/Uti p

IOO

8O

6o

4o

2o

o No cavity / No leakage[

Mlnirnimed leakage

nx BaJellne leakage [

Increased leakage [

: Maximum leakage J

0 , , , _.... t ....

0.66 0.60 0.66 0.?0 0.76 0.80

Relative Tangential Velocity In, W./Utip

E
P

e_
_ZZ

P
eL

100

8O

6o

4O

2o

0
0.26

d ) Relative

0.45

lOO

8o

6o

4O

2o

0
6o

.... i .... i 'j_m" ' i ....

55 60
Relative Flow Angle In, _i, degree

i
, .... I

66 70 75

100

8o

i

i

0.30 0.35 0.40 0.45 0.50
Tangential Velocity Out, Wj/Utip

.... ! ....

]
]

Ii

J

45 50 55

E !
P 60

r,,

I=

40

y
tD

_' 20

0
35 40

f ) Relative Flow Angle Out, _z, degree

Figure VI. 15 Rotor 3 blade element performance near peak

efficiency operating condition: a) and b) axial velocity, c) and

d) relative tangential velocity, e) and f) relative flow angle.

6O



42

IOO

._ 8o

o
L

P
n_

g)

60

40

20

.... _ .... t .....

Y
i

i

i
i
I

o
-20 5-15 -10 -5

Incidence, _ degree

IOO

h)

o
o 5 I0 15 20

Deviation, 6, degree

25

2
r.

_a

0
h

lOO ..... ' .... T .... I .... T ....

_N o cavity / No leakageMinimi_d leakage
Ratline leakage

i_ L A Increaced leakage
i ¢ Maximum leakage

i
i

0 .... _ .... i.
5 10 15 20 25 30

i ) Relative Turning Angle, A_, degree

8O

6O

4O

2O

j)

IOO

8o

os. 60--
r,,

4O

,a 20

o
0.30 0.40 0.50 0.60 0.70

Diffusion Factor, DF

0.80

,00 

8o i i

20

o
L

r..

e,,

es

-0.05 0.00 0.05 0.10 0.15 0.20
k ) LouOoemoient,_ 1 )

lOO

8o

6o

4o

20

o
-0.05

r_ r

k ,

i

0.00 0.05 0.10 0.15

Lo_ Parameter, col,

0.20

Figure VI.15 (continued) g) incidence, h) deviation, i) relative turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.



100

._ 80

E
P 6O
r,,

40

" 20

a)

..0

E

e,

el

c)

,-r

E

e.

o
k

O_

e)

43

o
0.20

i i

0.25 0.30 0.35 0.40 0.45
Axial Velocity In, Vz/Uti p

1o0

80

E
P 60

el

4O

0

L
IP

_ 2o

b)

0
o.26

.... T.... ' .... r .... ' ....

' i

i

:/./:

0.30 0.35 0.40 0.45
Axial Velocity Out, Vz/Uti p

i

i ....

0.60

lOO ................ i ....

80 f ,

6O

u .... t .... • . ,

0.40 0.46 0.50 0.65 0.60 0.65

AbSolute Tangential Velocity In, V,/ULip

J_

E
o
r_

es
_zl

d)

1o0

8O

6o

4o

2o

.... t .... ] ........ , ....

i

i

I

• i ....o
0.05 0.I0 o.15 0.20 0.25 0.30

AbSolute Tangential Velocity Out, Va/Uti p

IOO

8O

6O

4o

2o

0
45

,.o

=

E
o

r_

e.

O.

lOO

8o

6o

4o

2o

i

\, i
]
I

0 , , , • _ ...... ;_" ....... _:_

50 55 60 65 70 15 20 25 30 35
AbSolute Flow Angle In, _81,degree f ) AbSolute Flow Angle Out, 18=,degree

Figure VI.16 Stator 3 blade element performance near peak

efficiency operating condition: a) and b) axial velocity, c) and

d) absolute tangential velocity, e) and f) absolute flow angle.

40



44

too Ioo ........ i'-_........ i....

.o 80 .0 80

40 _ .-.- i

_" 20 =_ 20

0 O0 .... ! "_5
-10 -5 0 5 10 15

) Incidence, _ degree Deviation,6, degree I

IOO i .=._ 1oo....,....T....r....'....
i I

80 8o I L I

eo 8o " :, (t 1
_ 40 _

0 ....................

20 25 30 35 40 45 0.30 0.40 0.50 0.80 0.70 0.80

_ o kale
60 _ 60 --_ --_o Baseline leakage --

U A IncreaSed leakage

40 .............. ,_ v i

t _
a, 20 ....... " 20 : I[_ _

t I

O_ 0
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.16 0.20 0.25

k ) Lo_sCoemcient,_ l) Loss Parameter, _p

Figure VI.16 (continued) g) incidence, h) deviation, i) absolute turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.



45

.a

E
o

r..

¢0

leo

8o

6o

4o

2o

..1

.... I .... I .... ! .... I ....

! I

I
= !

0.30 0.35 0.40 0.45

Axial Velocity In, Vz/Uti p

o
r..

r-

D.

O
L

n_

I

i
0 .... i ....

0.26 0.50
a) b)

100 .... ' .... ' .... ' .... ! ....

8O

6O

4O

]
i
I

20

I
;

I : i

Ai
!

0.25 0.30 0.35
0 • "

0.20 0.45

I

i .

0.40

Axial Velocity Out, Vz/Uti p

lOO

x Mlnlmiaed leakage [ '_
o Balleline leakage !

A lnereaBed leakage ] I

o Maximum leakage

60 i ///_"

40 __20 -- _
0 .,. i ....

0.56 0.60 0.65 0.70 0.75 0.80

C ) Relative Tangential Velocity In, WiUtip d )

80

E
o

r-

J_

E
o
r.

r-

O.

o

100 .... ' .... ' .... ' "_adm ! ....

80 _ '

6O

40 _
20

O, _ li i , , L .... I .... 1 ....

0.25 0.30 0.35 0.40 0.45 0.50
Relative Tangential Velocity Out, W,/Utip

100 
8O

o

_._ 6o_
4o

,ID

E

r,,

P
e_

50 55 60 65 70 75
e ) Relative Flow Angle In, _,, degree f )

IOO

80

60

40

20

0
36

.... i .... i .... ; .... i ....

40 45 50 55 60

Relative Flow Angle Out, _z, degree

Figure VI. 17 Rotor 3 blade element performance at increased loading operating condition:

a) and b) axial velocity, c) and d) relative tangential velocity, e) and f) relative flow angle.



46

el

,v,

O
t_

t._

el_

o

,o
a_

g)

I00

80

6O

40

2O

1oo

.o 80

..r.

o_. 60

4O

ID
0
k
IU

CU 2O

0 0

-20 -15 -10 -5 0 5 0 20 26

Incidence, _, degree h )

........ i ii

i! i

, I, I

l

;

4
i
J
in,_

5 10 15

Deviation, 6, degree

100

eo

6o

40

a. 20

o

i)

...._...., ....,....,.... iooV--_ _-_-----Ty_r_-l-
"_ x k/inimiaed leakage I

..... _p- _. Increased leakage |--J _ 60

,_ o Maximum leakage I

40 _' _ --

6 10 15 20 25 30 0.30 0.40 0.50 0.60 0.70 0.80

Relative Turning Angle, &_, degree j ) Diffusion Factor, DF

too i i : •

_ 60 _ ----

_ 4o

_ _0 i

,ID

.o

o

el_

lOO

-o.o_ o.oo o.o5 o.lo o.15 o:'o
k ) Lo,,s Ooemcient, _ 1 )

50

6O

4O

2O

0

-0.05

.... _.._._! .... ! .... , ....

i l

,1 IL ,

i

i i

1

i

0.00 0.05 0.10 0.15

Loss Parameter, op

Figure VI.17 (continued) g) incidence, h) deviation, i) relative turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.

0.20



100

_ 5o

_ 8o

40

IIJ

L

" 20

0

0.20
a)

100

,-r,

E

r.

r.,
m

L.

o1..

c)

=

E
o

m

cu

P
r,,

e)

8O

6O

4O

2O

I00

8O

6O

.... l .... I .... i .... I ....

...L I

o Nocatty / Noleaka_ l_
x Minimized leakage I |If
o BaSeline leakage l
A IncreaSed leakage []_"
o Maximum leakage

/Z

47

....... , . . . | ....

0.25 0.30 0.35 0.40 0.45

Axial Velocity In, Vz/Utip

0

0.40 0.45 0.50 0.55 0.60 0.65

AbSolute Tangential Velocity In, V,/Utip

!

8o

L7
k

b)

4o r i

f i
20 __

O_l .... I , , • • I ....

0.25 0.30 0.35 0.40 0.45 0.50

Axial Velocity Out, VTfULi P

4O

2O

0

45

.0
-I

E
o

o

0.

d)
0.05 O. I 0 O. 15 0.20 0.25 0.30

AbSolute Tangential Velocity Out, V,/Utip

.... i .... i .... i .... i .... !

/--
C

!

I

50 55 60 65 70

AbSolute Flow Angle In, #s, degree

.0

E
P

r..

=

e_

o
k

f)

100

8O

6O

4O

2O

0 , , , , I . .v.. i .-, , . I .... _ -

15 20 25 30 35

AbSolute Flow Angle Out, _8z, degree

Figure VI.18 Stator 3 blade element performance at increased

loading operating condition: a) and b) axial velocity, c) and d)

absolute tangential velocity, e) and f) absolute flow angle.

4O



48

100 .... ' .... ' .... _ .... ' ....

8O

k 60 l

m 40 '

-_,; -8...... , .... _8
) Incidence, _, degree

100 _

°_ 8o -------

_ i k!'_ i .i L I

_' ' t i

20 : ,

20 28 30 35 40 45

i ) Absolute Turning Angle, _, degree

.D

0
L

o
t_

h)

1oo-_-_-- __---_--=

8o__ 
80 i ; .

]

] :

40 ,_

0 5 10 15 20 25

Deviation. 6, degree

j)

I00

80

o 8o
r_

II)
11,

.... . . .

40

20

1
i I

i i
0 .... ! .... i ............

0.30 0.40 0.80 0.60 0.70 0.80

DiffuSion Factor, DF

100

80

o
r.

m

.o

8O

4O

2O

o

_n

............ i .... , ....

I

I

.... .... i .... , .... ; ....

0.05 0.10 0.15 0.20 0.25

Loss Coefficient,

100

80

50

40

20

0 0

0.00 0.00

k) l)

........ i .... i .... i ....

__ F o No cavity / No leakage
x Minimised leakage

. o Baseline leakage

_: lnerea_N.-.d leakage

I/aximum leakage

i

L

0.05 0.10 0.15 0.20 0.25

Lo¢_ Parameter, _

Figure VI.18 (continued) g) incidence, h) deviation, i) absolute turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.



49

and mixing of the large inlet total pressure deficit as it passed through the rotor. This

is supported by the axial velocity data and the increased levels of loss near mid-span

where rotor incidence values were actually reduced. Two dimensional thinking does not

always work for three-dimensional flows.

The third stator accepted the velocity distributions from the rotor discharge. These

distributions were shown to have decreased levels of axial velocity over the lower 50% of

span and slightly raised levels for the rest of the span when leakage was increased. The

absolute tangential velocity into the third stator was increased over the lower half of the

span. This corresponded with the decrease in rotor discharge relative tangential velocity.

Both of these trends, decreased axial velocity and increased tangential velocity, led to

increased stator incidence (inlet flow angle) near the hub. Near the tip, stator incidence

increased rotor incidence

rotor 3

decreased rotor incidence , "

v

_reased stator incidence

little change in
rotor devation

rotor 3 S

7-
_/I "''_'_ decreased stator incidence

little change in
rotor devafion

increased stator devation

•,, slight decrease in_. stator devation

a) near the hub b) across the rest of the span

Figure VI.19 Trends in the stage velocity triangles when seal-tooth leakages were

increased (solid line no cavity / no leakage, dashed line increased leakage).
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angleswere slightly reduced. Again, seeFigure VI.19 to more clearly visualize the
impact leakagehad on the stator velocity triangles.

The third stator exit flow wassimilar to that of the secondstator. More blockage
developedthroughthe passagewhenseal-toothleakagewas increased.Consequently,a
largeregionof low axial velocity existednearthehub (5-25% span).Theblockagenear
the hub forced fluid up toward the tip, which substantiallyincreasedthe axial velocity
there. From this experimentone cannot determinewhetherthe blockagenearthe hub
wascreatedby the increasein incidenceand/orby the extra leakagethroughthe seal-
tooth which wasentrainedby the power streamaheadof the stator. More discussions
on this subjectare presentedin Part 2. Near the hub (10-50%span)an increasein
stator exit tangentialvelocity existed: however,at the hub (0-10%), a decreasewas
apparent.Considerablevariationsin statordeviationanglesexistedwith varying leakage;
nearthe case(60-95% span)deviationdecreased,nearthehub (10-50%span)deviation
increasedand at the hub (0-10%span)deviationdecreased.At 15%spanthereexisted
a 7° differencein deviation betweenthe no cavity / no leakage and maximum leakage

configurations at both operating conditions. At the hub (0--10%), reduced deviation

values corresponded to decreased tangential velocity levels and indicate a tendency for

hub fluid to become overturned. At first, these variations in stator deviation angle with

span and leakage amount appeared to correspond well to the variations in stator incidence

angle with span and leakage amount. However, as with blockage development near the

hub, analysis of data from this experiment alone can not determine whether the changes

in stator deviation were only caused by stator incidence changes. Stator diffusion factor

data show decreased loading over much of the span (25-100%), while near the hub

loading increased. The reduction in diffusion across most of the span indicates that the

stator produced less static pressure rise when seal-tooth leakage was increased. Marginal

changes in total pressure loss occurred outboard 50% span; however, across the lower

50% of span large loss increases transpired. At 20% span, the loss nearly doubled when

going from no cavity / no leakage to maximum leakage. This dramatic increase in loss

can obviously be detrimental to compressor efficiency.

Circumferential Distributions Of Third Stator Flow

The radial distributions of circumferentially averaged blade element data substantially

changed when the seal-tooth leakage was increased. To gain further insight into the

causes of these changes, a few selected circumferential distributions of third stator flow

are reviewed here. Data are presented for only the increased loading operating condition,

although similar trends were seen in the near peak efficiency data. Measurements at two

radial positions, 80% and 20% span, are given. Inlet and outlet axial velocity distributions

are shown in Figures VI.20 and VI.2 l, respectively, while absolute tangential velocity data
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are given in Figures VI.22 (inlet) and VI.23 (outlet). Incidence (Figure VI.24), deviation

(Figure VI.25) and total pressure loss (Figure VI.26) variations are also displayed.

At the inlet of the third stator, measurements suggest the variations in circumferen-

tially averaged blade element performance values with change in leakage were caused by

constant incremental shifts in flow property levels across the entire passage. Moderate

shifts in axial and tangential velocities were present at 20% span, while only small shifts

transpired at 80% span. Since the velocity distributions were not altered, the pitchwise

distributions of incidence for each leakage amount remained similar but had shifted levels.

The sinusoidal distributions of inlet axial velocity, inlet tangential velocity and incidence

seen at both radial locations were common at all spans. These distributions were primarily

caused by the potential interaction of the downstream stator blade on the upstream flow

field. This interaction directly varied the flow angle and static pressure distributions
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across the passage in front of the stator. A secondary cause of the observed sinusoidal

distributions was the fixed "avenue" chopped segments of the upstream stator wake.

Although traveling more than a chord length before reaching the third stator inlet, the

upstream second stator wake segments were not fully mixed out and, hence, contributed

to the small pitchwise variation in total pressure at the entrance of the third stator.

Contrary to data for flow into the stator, data for flow exiting the stator demonstrated

sizable changes in the pitchwise distributions of flow properties with leakage. This was

especially true near the hub. Stator exit axial velocity data show that at 20% span

the large region of blockage depicted in Figures VI.16 and VI.18 developed near the

suction side of the blade wake. Pressure and suction sides of the wake are denote by

PS and SS, respectively with the split determined by the location of the minimum axial

velocity. Comparisons of the no cavity / no leakage data to that of the maximum
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leakageconfiguration indicatethe statorwake width increasedfrom 40% to 80% pitch
while the wake depth grew from 50% to nearly 90% of the free streamvalue. Large
variationsin the pitchwisedistributionsof tangentialvelocity also existednearthe hub
(20%span).It appearsthat thesuctionsidetangentialvelocity decreasedwith increased
seal-toothleakagewhile the pressureside tangentialvelocity actually increased.Only
smallchangesto thewake width anddepthoccurredat 80%spanandvirtually nochange
to the levels or distributionsof tangentialvelocity were detectedthere.

Pitchwisedistributionsof deviationandlossdataat 80%spanshownearlynochange
with leakage.At 20% span,though,largevariationsin deviationandlosswith leakage
changewere presentacrossmost of the passage.A definite trendexistedin which the
suctionside deviation andloss valuesincreasedwith increasedseal-toothleakage.The
deviationvaluebecamegreaterthan 40° at 80% pitch for the maximum leakage case.

The loss in total pressure at the same location and for the same configuration reached

nearly 0.7. Both of these values, along with the significant decrease in axial velocity,

suggest that the suction surface boundary layer was severely disrupted when seal-tooth

leakage was increased. It is interesting to note that even though the suction side deviation

severely worsened, the flow deviation between blade wakes (10% to 60% pitch) were

not significantly altered.
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CHAPTER VII

RESULTSAND ANALYSIS OF DATA: PART 2

The resultsof ChapterVI revealedthat significantvariations in overall, individual
stageandbladeelementperformanceoccurredwhenshroudedstatorseal-toothleakage
was changed. However, since the leakageamountsof all four stageswere altered
uniformly and simultaneously,the inlet flow profiles of the last three stagesvaried
greatly with eachchange.Theseconditions madeit difficult to identify the influence
of seal-toothleakagealone on the performanceof each individual stage. A second
experimentwas thereforeperformed in order to specifically determinethe influence
of seal-toothleakageon the performanceof an embeddedstage. For this experiment
individual stageandbladeelementdatawerecollectedwhenonly thethird stageleakage
wasmodified.Stagesone,two andfour werekeptat thebaselineleakageconfiguration.
The seal-toothclearancevaluesimplementedon thethird stagefor this seriesof testsare
describedin ChapterV. This chaptersummarizestheresultsof this secondexperiment
with frequentreferenceto datapresentedin ChapterVI.

Individual StagePerformances

Changesto the third stageshroudedstator cavity geometrymoderatelyalteredthe
third and fourth stagepressurerise characteristics.No measurabledifferenceswere
detectedin thefirst andsecondstagepressurerisevalues.This is shownin FigureVH.1.
No changein first andsecondstagecharacteristicswereexpectedsincetheredistributions
of the flow field in the third stagewere not consideredlarge enoughto influencethe
upstreamstages.The performancedegradationof the third and fourth stageswasalso
expected.Thereductionof third stagepressurerisewasdirectly influencedby theamount
of seal-toothleakageof that stage.Sincethe fourth stageseal-toothclearancewas the
samefor all configurationsin this experiment,thefourth stagepressurerisedecreasewas
causedby the different inlet conditionsinto the fourth rotor.

Reductionsin the normalized third stagepressurerise values at two operating
conditionsareshownin Figure VII.2 for third statorseal-toothclearancevalues. Third
stagedataalreadypresentedin FiguresVI.9 andVI.10 of Part 1, arealso displayedin
Figure VII.2 and representedby filled symbols.For both experiments,the no cavity /

no leakage data were considered the zero clearance references. Data for variation of the

third stator clearance only show a 2.0% to 2.5% reduction in the stage pressure rise at

both operating conditions when going from no cavity / no leakage to maximum leakage.

The pressure decrease was represented well by a linear approximation. Comparisons of

the Part 1 and Part 2 data suggest that nearly 40% of the third stage pressure decrease
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observed in Part 1 could be directly attributed to the change in the third stator seal-tooth

leakage alone.

The variations in the fourth stage pressure rise values depicted in Figure VII.ld

indicate that alterations to the fourth rotor inlet flow field associated with third stator seal

clearance changes only were responsible for a large portion of the stage pressure rise

decreases present in the data of Part 1 (Figure VI.8d). At increased loading operation

(b = 0.350) the decrease in forth stage pressure rise was approximately 0.025 compared

to 0.050 for Part 1 (Figure VI.8d). Therefore, nearly half of the forth stage pressure rise

degradation in Part 1 can be attributed to the variations in the incoming flow to rotor 4.

This fact coupled with the conclusions drawn from stage 3 data indicate that the presence

of seal-tooth leakage affects stage performance in two distinct ways. First, a stage

performance penalty will be suffered because of the amount of leakage associated with

that stage. Second, performance of downstream stages can be degraded by any upstream

stator flow field disruptions due to increased seal-tooth leakage of that upstream stator.

On a final note, some care should be taken when reviewing the stage performance

data of Part 2, since the values of the pressure rise coefficient quoted contain a small error

which was not accounted for during the data reduction process. The error arose because

a repeating stage environment was assumed when calculating the isentropic enthalpy

o
0.0

I !

0 ear peak efficiency0 Increased loading

Data from Part I

0.5 1.0 1.5
Percent Seal-Tooth Clearance, e/h x I00

Figurc VII.2 Third stage pressure risc penaltics for near

peak efficiency and increased loading operating conditions.
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rise values from the casing static pressures. The assumption of a repeating stage was

surely incorrect since modifications were made to only the third stage geometry, creating

different stage outlet flow conditions compared to the inlet conditions for the last two

stages. Quick estimates of this error were found to be less that 0.2% of the maximum

pressure rise coefficient (about the size of the symbols in Figure VII.2): however,

complete spanwise inter-stage measurements were not gathered preventing a thorough

analysis to be completed. Therefore, the reader is simply cautioned when examining Part

2 individual stage performance data.

Circumferentially Averaged Third Stage Flow Details

Blade element data were again gathered for the different seal-tooth leakage rates

in order to quantify the changes in radial distributions of circumferentially averaged

flow properties. For this experiment, pneumatic probe traverses of the third stage were

performed over the lower 50% of span (only 30% of the span was traversed for the

baseline case). Unfortunately, fourth rotor discharge measurements were not gathered.

Data were acquired in a matrix of 19 radial locations and 26 circumferential positions at

two operating conditions for most leakage rates. Measurements were also appropriately

clustered near large gradients in the flow properties.

Data collected for Part 2 indicated no measurable differences in the third rotor blade

element performance values for the various leakage rates except for a small region at the

hub (0-3% span). Since the first and second stages performed overall the same for all

cases (shown in Figures VII.la and VII.lb), the flow into the third rotor was identical

for each leakage rate, although obvious differences in the data existed when comparing

dissimilar operating points. The measured third rotor inlet flow distributions corresponded

to the baseline values denoted by squares in Figures VI. 15a, c,e,g and VI.17a, c,e,g from

Part 1. The flow out of the third rotor was nearly identical for each leakage. The only

difference detected in the data between the various configurations was a slight increase in

the relative tangential velocity at the hub (0-3% span) when seal-tooth leakage increased.

The third rotor exit flow data of Part 2 closely followed the baseline distributions already

presented in Figures VI.15b,d,f,h and VI.17b,d,f,h (Part 1) and are not presented here.

Radial distributions of stator three blade element performance are given in Figure

VII.3 for the near peak efficiency operating condition. Data corresponding to the

increased loading operating condition are present in Figure VII.4. For increased loading

all performance parameters which utilized the exit wedge probe measurements for the

no cavity / no leakage configuration were discarded, since probe damage occurred prior

to conducting the survey. As with Part 1, stated trends are correlated with increasing

seal-tooth leakage.
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As previously stated, the various leakage rates had little impact rotor 3 performance.

Furthermore, rotor 3 discharge flow conditions were nearly identical for all five leakage

rates when at the same operating condition. This is supported by the stator inlet flow

data shown in Figures VII.3a, c,e,g and VII.4a, c,e,g. The small shifts in the levels of

axial velocity, tangential velocity, absolute inlet flow angle and incidence for the peak

efficiency condition are not much more than the measurement accuracy at that station. A

reduction in whirl with increased seal-tooth leakage from 0-3% span was present at both

operating conditions. This corresponds with the increased relative tangential velocity

mentioned earlier. This reduction in tangential velocity reduced the incidence onto the

stator by about 4 ° at 1% span at both operating conditions.

As in Part 1, Part 2 data show substantial alterations in the radial distributions of

flow properties at the exit of stator 3. Likewise, the trends established in Part 1 when the

seal-tooth leakage was increased were repeated in Part 2, but to a lesser extent. This is

confirmed by comparing Figures VU.3b,d,f,h-I and VII.4b,d,f,h-1 to Figures VI. 16b,d,f,h-1

and VI. 18b,d,f,h-1, respectively. Increasing the third stage seal-tooth leakage lowered the

axial velocity near the hub (0-20% span) while outboard of 30% span the axial velocity

was raised. The absolute tangential velocity was reduced near the hub (0-8% span)

but increased away from the endwall (10-50% span). Deviation angles increased except

very near the hub. An increase of 5 ° occurred near 12.5% span for both operating

conditions. Since the stator deviation grew, but incidence angles were unchanged, the

absolute turning decreased over most of the span. Diffusion factor distributions show

increased loading near the hub (0-15% span) and a reduction in loading outboard of

20% span. Finally, total pressure loss near the stator hub increased greatly. The region

in which the loss increased extended out to 25% span near peak efficiency and 35%

span for the increased loading operating condition. At 12.5% span, the loss increase for

the maximum leakage configuration was nearly double the value associated with the no

cavity / no leakage configuration.

The extent to which seal-tooth leakage directly affects the stator blade flow field can

be inferred from the comparisons of Part 1 and Part 2 circumferentially averaged data.

This, however, does not readily lead to a useful analysis. To make a more quantitative

comparison, two additional parameters have been calculated. The first, defined by

Equation VII.l, is an axial velocity displacement thickness. This can be taken as a

type of one-dimensional axial velocity blockage factor, similar but not exact to what

might be used in a throughflow calculation. This term is used to represent the "extra"

hub blockage which developed in a stator passage due to the entrainment of leakage

flow. The second parameter, given in Equation VII.2, is simply the mass averaged total



60

5O

j_ 4O

:Z:

P 30

IO
fl,

., 20

0
¢J

0

10

0

0.20
a)

--L-i-:T7
o No cavity / No leakage Jl
x Minimised leakage _
a BaSeline leakage _
A Increased leakage ]]
o Maximum leakage

I I ' I

F

i

0.26 0.30 0.35 0.40 0.45

Axial Velocity In, Vz/Uti P

50

40

=:

_ 30

., 20

k

_" 10

0

b)

.... ! .... i ....

I

i i

i .......

i i

] i
i

I

!
I

.... i .... i .... i .... i ....

0.25 0.30 0.35 0.40 0.45 0.50

Axial Velocity Out, Vz/Uti p

5O

4O

-r.

E
o 30

.,_ 20

o
f.,
0

0

c)

I ....

0.40 0.45 0.50 0.55 0.60 0.65

AbSolute Tangential Velocity In, VJUtip d)

4O

o 30
r.

ft.,

20

_J
L

_" 10

60 ........ ! i-_ ...... !I

t i
; i

L

0 • •

0.05 0.10

Abllolute

i
!

I

i .

0.15 0.20 0.25

T ....

i
I

0.30

Tangential Velocity Out, VJUtip

5O

._ 40

,.p

_ 3o

e_

.o 20
e_
o

e_ lo

o

45
e)

4O

3:

_ 3o

_u

.,., 20

_u 10

50 .... _' ' ' ' ' .... ! .... ' ....

\ i

I
I

i

0 .............. , , o , , ,

50 55 60 66 70 15 20 25 30 35

AbSolute Flow Angle In, _I, degree f ) AbSolute Flow Angle Out, /_ degree

Figure VII.3 Stator 3 blade element performance near peak

efficiency operating condition: a) and b) axial velocity, c) and

d) absolute tangential velocity, e) and f) absolute flow angle.

40



61

5o

.o 40

E
o 30

r..

.., 20

¢J
L

" 10

o

g)

'''''I; .... ! ....

i

i

i i

...... i .... i ....

-10 -6 0 5 10 15
Incidence, _ degree

50

.a 40

E
o 30

r..

=

¢Z,

20

o
L

" 10

0
0

h)

.... ii ' '_" i ........ i

I
i I
, I
J
i
I

I
i i

i

.... I , , _" , "_ ._',-'_,-_

5 10 15 20 25

Deviation, 6, degree

i ....

L

I
I

tl

60 .... i

40

E
P 3o

e

20

IP

n 10

0

i)

i] , - _ .... i .... I ....

:\
I
I

i
I

!
i

I i

20 25 30 35 40 45
AbSolute Turning Angle, A_, degree

._ 40_

I i

= I i
30 i I

i i

0.30 0.40 0.60 0.60 0.70 0.80

j ) Diffusion Factor, DF

50

._ 4O

o 30
¢.l.,

=

"In

20
=

Ill

" 10

k)

, .... i .... i ....

i

I

I

0 ....

0.00 0.05

!

0.10 0.15 0.20 0.25
Loss Ooefficient,

50

4O

E
o 30
r_

.\
[] Baseline leakageIncreased leakage
o Maximum leakage

' T.... i .... ' ....

_ x Minimized leakage

i

0 ,_'

0.00 0.05 0.10 0.15 0.20 0.25
I ) LoSS Parameter, _

Figure VII.3 (continued) g) incidence, h) deviation, i) absolute turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.



62

5o

.a 40

_ 3o
gL,

e'

eL

.,., 20

0

0
k
0

n 10

0
0.20

a)

.... | .... I .... I ' '

o No cavity / No leakage
× Minimised leakage
o Baseline leakage
A Increased leakage
o Maximum leakage

: I r
J i

i

0.25

i

! i

/
i

i i
i

i

0.30 0.35 0.40 0.45
Axial Velocity In, Vz/Uti p

5O

4O

o 30
r_

m 20

_ 10

0

b)

I .... I "

; :

i i

I

i J

0.25 0.30 0.35 0.40 0.45 0.50

Axial Velocity Out, Vz/Uti p

i

5O

•_ 4O

o
r._

4_

O.

., 20
z-
0

o
0

D. lO

o

C)

.... i

\
k

i

!
I

i i

i __ 0
0.40 0.45 0.50 0.55 0.60 0.65

Absolute Tangential Velocity In, VJUtip d )

4o

.o 30
r.

¢

_ZL
20

¢
0

I..
0

_" 10

50 .... i .... "''' .... ' ....

I

I

0 i ....

0.05 0.I0 0.15 0.20 0.25 0.30

AbSolute Tangential Velocity Out, Ve/Uti p

5O

4O

o 30

._ 20

o
0
L
_P

a. 10

o

C)
45

.... I

i I

i
! I

I

I ....

' l

.... ! .... I .....

50 55 60 65 70
AbSolute Flow Angle In, ill, degree

50! ....
.o 40

P 3O
r..

e,

_u

_ 20
e,
ID

r,,,,

e_ lo

o

f)
15

i i

\

20 25 30 35

AbSolute Flow Angle Out, ,8s, degree

Figure VII.4 Stator 3 blade element performance at increased

loading operating condition: a) and b) axial velocity, c) and d)

absolute tangential velocity, e) and f) absolute flow angle.

4O



63

5o

g)

o
-IO -5 0 5

Incidence, _ degree

lO 15

5o

40
:3

=:

E
_ 30

n.

la

..o 20

i11

_" 1o

o
o

h)
5 I0 15 20 25

Deviation, 6, degree

5O

40
:3

E
_ 3o

G

D..

20

" 10

0

i)

.... I .... 7
i
I

• ' • i .... i ....

i

I [ ,

i j

20 25 30 35 40

Absolute Turning Angle, A_, degree

45

5O

.o 40
:3

E
P 30

r.,

ID

20
Ip

" tO i
;

i

0 .... t .

0.30 0.40
j)

i  ii I

i i
i I

• . i .... i .... i ....

0.50 0.60 0.70 0.80

Diffusion Factor, DF

5O

._ 40
:3

E
_ 3o

r,,

20

P
ID

_u IO

k)

.... i .... i ....

I
I

i

>,. '

I

i
0 .... , .... ;.. .i .... I ....
0.00 0.05 0.10 0.15 0.20 0.25

Loss Coefficient,

i

5O

._ 40
;3

E
_ go

r,,

e_

.. 20

o
L
II)

.... T ;t..:t;>
'_I[x Minimimedleakage

_ o Btmelineleakage
_ Increased leakage

o Maximum leakage

0 , . . . ,x , _ |1. . i ,.,_

0.00 0.05 0.10 0.15 0.20 0.25
] ) LoSS Parameter, _p

Figure VII.4 (continued) g) incidence, h) deviation, i) absolute turning

angle, j) diffusion factor, k) loss coefficient and 1) loss parameter.



64

pressureloss acrossa spanwiseportion of the passage.

r2

rh Vz,re f
T1

r dr

T2

f

r2

f
rl

(VII.l)

(VII .2)

The calculation of both these parameters required some care. Integrations were

performed by trapezoidal summations across 35% of the span (5% to 40%). Integration

to the hub (0% span) was not performed since the measurement uncertainty rose below

5% span. Integration was stopped at 40% span since flow properties were nearly identical

outboard of 40% for the various configurations. The values of axial velocity, V_, were

taken from the circumferentially averaged values already presented. The reference axial

velocity, Wz,ref, was taken to be the value at 40% span. Note that this creates a different

displacement thickness than defined by Smith [21], but still yields appropriate trends.

As with axial velocities, total pressure loss values, w, were also taken from the radial

distributions. Therefore, the averaged loss term does not account for any extra loss in

total pressure caused by the further mixing of circumferential or radial non-uniformities.

Finally, when calculating both parameters, ideally it may have been more appropriate to

integrate across a set of stream lines having constant mass flow instead of constant area.

This proved to be difficult when tried in practice. The volumetric flow rate through the

upper and lower integration bounds varied at most by only 5% for the range of leakage

rates, which, although not perfect, was considered to be acceptable.

These parameters were calculated from both Part 1 and Part 2 data at near peak

efficiency and increased loading operating conditions. Displacement thickness values

are illustrated in Figure VII.5, while total pressure loss quantities are given in Figure

VII.6. One trend should be noted immediately when viewing both figures. The values

of either displacement thickness or loss for a specific operating condition should be

nearly equal for the baseline leakage rate (e/h ,_ 0.7%), since, for both Parts, nearly

identical incoming flow distributions and seal-tooth leakage rates were present for this

case. This is seen to be true. A second trend to be noticed is that, for clearances less

than baseline (e/h < 0.7%), Part 1 near peak efficiency displacement thickness and loss

values are less than those of Part 2. This could indicate the added benefit of having a

"better" flow profile coming into the stator which occurred in Part 1. This trend may

also be inferred by extrapolating the increased loading data to zero clearance. Finally,

for clearances greater than baseline (e/h > 0.7%), Part 1 displacement thickness and
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loss values (at both operating conditions) are greater than those of Part 2. This indicates

the extra detriment caused by having a "worsened" flow profile coming into the stator.

For clearances larger than the baseline value, nearly 65% of the extra blockage which

developed in Part 1 can be attributed solely to the increase in seal-tooth leakage under

the third stator. The other 35% was caused primarily by different flow conditions into

the stator. The loss increase found in Part 1 can also be broken into the two contributing

factors. Increasing the seal-tooth leakage under stator three accounted for 56% of the

increase in loss found in Part 1 (67% for increased loading), while 44% may be attributed

to the different incoming flow distributions (33% for increased loading).

Comparisons of all the data from both Parts leads to two major conclusions. First,

seal-tooth leakage affects rotor performance in a rather indirect manner. This conclusion

was drawn because it was found that varying the amount of seal-tooth leakage in a

stage negligibly alters the rotor performance of that stage. Instead, seal-tooth leakage

disrupts the stator flow field which, in turn, produces different stator exit flow conditions.

These different conditions into the downstream rotor then modify the performance of

that rotor. Second, seal-tooth leakage influences the performance of a stator both directly

and indirectly. Changing the amount of seal-tooth leakage in a stage can alter the stator

performance for that stage. This was clearly seen in Part 2. Furthermore, provided the

downstream rotor cannot "heal" the degraded incoming flow, the flow into the next stator

may also be altered. This can alter the performance of that downstream stator. From

these conclusions it becomes apparent that a designer must not only account for the

influence of seal-tooth leakage in the design of the stator row in which leakage occurs

but also consider the influence in downstream blade rows.

Circumferential Distributions Of Third Stator Exit Flow

Attention is now turned to the circumferential and radial distributions in the third

stator exit flow properties. Discussion is not focused on the comparisons between Part

1 and Part 2 data, since similar trends can be seen in both data sets. Instead, these

Part 2 distributions are presented in order to support hypotheses which describe how the

entrained shrouded stator cavity leakage flow interacted with the power stream. Since the

incoming flow was nearly identical for each case, spatial variations ahead of the stator are

not reviewed. Similar tendencies in the data were observed at both operating conditions;

however, only increased loading measurements are presented here. The variations in

flow properties are presented as contour plots, covering a range of one stator pitch and

30% of the span. Exit velocity components are illustrated in Figures VII.7 (axial) and

VII.8 (tangential). Flow angles and total pressure loss coefficients are depicted in Figures

VII.9 and VII.10, respectively. Plots in each of the figures are placed from top to bottom

in sequential order from the minimized to maximum leakage configuration. This aids in
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viewing the dramatic influence seal-tooth leakage has on the stator exit flow field. Note

that the no cavity / no leakage measurements are omitted.

It is proposed that as shrouded stator cavity leakage flow travels through the passage,

it acts as suggested by Adkins and Smith [8]. Their concept is quickly reviewed here

with some additional comments added. The flow in the upstream cavity is assumed

to be low momentum fluid which becomes entrained by the power stream as it exits

the cavity ahead of the stator. As it travels downstream through the passage, this low

momentum fluid is driven circumferentially, from blade pressure to suction side, by the

cross-channel pressure gradient which is set up by the turning of the primary flow. Some

of the leakage fluid collects on the suction side of the blade and likely further worsens

the state of the boundary layer there. The remaining leakage fluid exits the stator close to

the hub, provided substantial mixing does not occur. This fluid is still low in momentum

(low total pressure) and is highly overturned. As leakage is increased, the suction side

boundary layer should appear to worsen over a larger percentage of the span because

of the extra collected low momentum fluid there and/or additional degradation of the

blade boundary layer. Furthermore, the region of the overturned flow exiting the stator

should also increase in size with more fluid becoming further overturned. This process

is illustrated in Figure VII. 11 which shows idealized streamlines near the hub for small

and large leakage amounts. Although described here in terms of pressure gradients and

low momentum fluid, the process is identical to the tilting or stretching of a vorticity

vector as it convects through the channel, with the production of secondary flows as

envisioned by Smith [11] and Adkins and Smith [8]. The data in Figures VII.7-VII.10

support these premises.

upstream cavity -,_ ,,_ _ -,_ upstream cavity

downstream cavity / / \ \ downstream cavity

a) small amount of leakage b) large amount of leakage

Figure VII. 11 Idealized streamlines near the hub for small and large leakage amounts.
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Discussionsarebegunby first analyzingthe statorexit flow field correspondingto
the minimized leakageconfiguration.Thesedataare representedby the top plots (a) in
FiguresVII.7--VII. 10. For this configuration,the bladewakenearthe hub wasslightly
thickened.This canbe seenin the axial velocity and lossdistributionsbelow 20% span
whencomparedto 30% spandata.At 10% span, a region of low axial velocity and high

total pressure loss was present in about the middle of the blade wake. A small region

of low tangential velocity also existed at the same radial location but slightly further off

the suction side. In this area, flow angles were near 15° , which, for that radial location,

implies zero deviation. Flow angles of 40 ° near 15% span (corresponds to deviation of

25 °) indicate that perhaps a small region of separated / highly disrupted flow existed on

the suction side of the blade. This is also supported by the higher values of loss there.

(Separated flow was observed on the blade with tufts mounted to the suction side for

the baseline configuration at increased loading.) From this review one may conclude

that even though loading was quite high near the hub (DF = 0.6 at 10% span), the

blade was performing quite well with only minimal regions of high blockage or loss and

underturned or overturned flow exiting the stator.

As leakage was increased, the blade suction surface wake degraded substantially.

This is probably best seen by the increase in total pressure loss shown in Figure VII.10.

Between 10% and 20% span, just off the suction side, the region of high loss (w > 0.25)

covered nearly half of the blade passage for the maximum leakage configuration while

the maximum loss level rose above 0.65. At the same location, the wake axial velocity

deficit became greater in both width and depth (Figure VII.7) while the flow angles

progressively became more underturned (Figure VII.9). The region of greatest loss for

the maximum leakage case (near 15% span) had near zero axial velocity and a peak

flow angle reaching 60 ° . The higher loss across more of the passage also reduced the

tangential velocity further off the suction surface (best seen toward the left side of the

contour plots in Figure VII.8), while at the same time the extra blockage forced the

fluid between wakes to increase in both axial and tangential velocity. All of these trends

indicating the degradation of the blade suction surface wake are surmised to be caused by

the additional collection of leakage fluid on the suction surface and/or further disruption

of the blade suction surface boundary layer.

Increasing leakage also produced a larger region of overturned flow very near the hub

and eliminated underturning at the hub. This is clearly seen in the flow angle distributions

below 10% span as illustrated in Figure VII.9. For the maximum leakage configuration,

40% of the passage had overturned flow (8 < 15 °) with a small region having flow

angles below 50 . All of this fluid was low in total pressure, which was postulated above.

These trends are surmised to be caused by the additional leakage fluid which does not

collect on the suction surface, but instead exits the passage very near the hub.
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The processproposedby Adkins and Smith [8] to accountfor the effects of seal-

tooth leakage on compressor performance seems to, at least qualitatively, match quite

well the trends of the data reported herein. In hindsight, this should not be surprising.

Their thought development was influenced by data obtained from GE's large low-speed

research compressor which was and is still effectively used as a multistage compressor

design tool. The facility and blading used in these experiments are very similar to the

ones utilized at and designed at GE. Therefore, it would be surprising to find the fluid

mechanics modeling to be different. Of course, the model assumes that the entrained

cavity leakage flow has low momentum compared to the power stream. This assumption

is proven to be true for this compressor in Chapter VIII.
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CHAPTER VIII

CAVITY FLOW FIELD CHARACTERISTICS

Spatial and temporal variations in the flow field within the up-and-downstream stator

hub cavities are now reviewed. The data are presented to give compressor designers

some indication of the complexities of the flows within the shrouded stator cavities

in current engines. Emphases are place on simple descriptions of the flow properties

with some probable explanations of why some of the observed variations existed. No

attempt is made to assess which flow details, spatial or temporal, are absolutely needed

to accurately model cavity flows in a design calculation. All data shown are for the third

stage operating at the near peak efficiency condition for the baseline leakage rate on all

four stages. Other data collected but not presented here indicate that the trends seen at

this operating condition were also detected at increased loading. Furthermore, the other

three cases having seal-tooth leakage also had similar cavity flow field characteristics.

Circumferentially Averaged Flow Details

It is useful to begin examining the details of the up-and-downstream cavity flow

fields by reviewing the radial distributions of circumferentially averaged flow properties.

This review provides a good representation of the general characteristics of the flow

within the cavities without the added complexity of axial, circumferential and unsteady

variations which occurred. Presented data are concentrated in the mid-gap regions of

the up-and-downstream cavities of stator 3, cover a range from -10% to 10% span and

represent the area average of 21 pitchwise measurements. The actual axial positions and

radial extents of the measurements are indicated with vertical markers (ST 3.5 and ST

4.0) in Figure VIII.1. Where applicable, data acquired with both pneumatic and hotfilm

probes are given.

ST 3.5
!

rotor 3 \ stator 3
A

\
,..x_, j

upstream cavity -

ST 4.0

I
f

rotor 4 kiel hotfilm

u._ downstream cavity

wedge

Figure VIII.1 Axial positions and spanwise extent of radial distributions of

circumferentially averaged flow properties with scaled probe sizes.



75

Dramatic differences between cavity and power stream flow fields were noted. In

general, the flow in the cavities involved low velocity fluid moving primarily in the

circumferential direction. The data in Figure VIII.2 demonstrate that as the probes were

traversed into the trench, little change in the static pressures were measured; however,

large reductions in total pressures occurred. Since the nondimensional velocity magnitude

can be approximated by Equation VIII. 1, it is easy to confirm that the velocity magnitude

within both cavities was much lower than that of the power stream.

V
-- ,_ v/Cpt - Cps (VIII. 1)
U_ip

Traversing into the downstream cavity (ST 4.0), total pressure first decreased to

a local minimum value and then increased. Since the static pressure remained nearly

constant, the total pressure distribution gives evidence that as power stream fluid was

drawn into the downstream well, it first lost but then gained momentum as it proceeded

further into the cavity. This suggests that work was done on that fluid by the rotor drum.

Figure VIII.2 also shows that the level of total pressure in the upstream cavity was less

than in the downstream cavity, indicating a loss in total pressure as fluid moved across

the seal-tooth from ST 4.0 to ST 3.5. Within the upstream cavity (ST 3.5) total pressure

was nearly constant (-4 to -10% span) and even though there was a loss in total pressure

across the seal-tooth, the upstream cavity velocity level was slightly greater than the

downstream cavity velocity level because of the much lower static pressures at station

3.5. Flow within the cavities is shown to be primarily in the circumferential direction

in Figure VIII.3 where flow angles acquired from both wedge and hotfilm probes are

presented. Slight discrepancies between hotfilm and wedge probe data distributions at

both stations are apparent, however, the trends are the same. At -10% span, data for

both stations show the flow is nearly 90 ° from axial. For a portion of the span in the

downstream cavity (ST 4.0), flow angles were measured to be greater than 90 °. This

indicates fluid moving in the negative axial direction.

Variations of axial and tangential velocities are presented in Figures VIII.4 and VIII.5,

respectively. Interesting trends can be seen in both figures. Figure VIII.4 suggests an

axial velocity distribution similar to a shear layer at both stations. At -10% span the

axial velocity was virtually zero while at 5% span it was near the much larger power

stream value. At station 4.0, negative axial velocities measured with the hotfilm probe

are shown to be as large as 10% of the tip speed. These negative velocities correspond to

the flow angles greater than 90 ° shown in Figure VIII.3. At 0% span, the axial velocity

was not zero but nominally 20% of the tip speed (25% of the hub speed). Figure VIII.5

shows that the tangential velocity at station 3.5 could also be represented as a shear layer

while at station 4.0 this was not true. In the downstream cavity the tangential velocity
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first decreased and then increased as immersion into the trench became greater. This

observed trend compliments the aurgument that the rotor drum quickly input work to the

incoming cavity leakage fluid. At -10% span the tangential velocity was approximately

27% of tip speed (34% of the hub speed) at station 4.0 and was slightly less than 34%

(43%) at station 3.5. This agrees with the velocity magnitude discussions.

Although available from hotfilm probes, circumferentially averaged radial velocity

distributions are not presented. It will be stated in passing that station 3.5 circum-
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Figure VIII.2 Circumferentially averaged static pressures and total pressures in

the upstream (ST 3.5) and downstream (ST 4.0) stator 3 cavities. Shaded
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ferentially averaged radial velocities were virtually zero while at station 4.0 they were

approximately 4% of the tip speed. At first glance, this suggests mass was not conserved,

since it appears that more flow went in at station 4.0 than came out at station 3.5.

However, data were gathered at only one axial location at each station and so the mass

flux across each gap was not actually measured.

The relatively large negative axial velocities within the downstream cavity (and small

negative axial velocities in the upstream cavity) at first caused concern. It was envisioned
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Figure VIII.4 Circumferentially averaged axial velocities in the upstream (ST 3.5)

and downstream (ST 4.0) stator 3 cavities. Shaded symbols represent the

kiel (circle), wedge (rectangle) and hotfilm (slash) probe sensing regions.
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Figure VIII.5 Circumferentially averaged tangential velocities in the upstream (ST 3.5)
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that with seal-tooth leakage, fluid was drawn into or out of the cavity similar to that of a

sink/source in potential flow. Data suggest that the flow within the cavity may be much

more complex. The meridional velocity components in both the up-and-downstream

cavities (shown in Figure VIII.6) indicate a vortical flow structure, similar to what would

be produced by a driven cavity. Although this conclusion is drawn from very limited

data, numerical results obtained by Heidegger et al. [22] support this hypothesis and data

presented later in this chapter confirm the presence and extent of this vortical structure

in the upstream cavity.

Circumferential Distributions Of Third Stator Cavity Flow

The distributions of circumferentially averaged flow properties proved that flow in

the cavities was substantially different from flow in the power stream. Measurements

also indicated circumferential variations in some flow properties within both the up-

rotor 3 / rotor 4

Figure VHI.6 Meridional velocity vector components in the

upstream (ST 3.5) and downstream (ST 4.0) stator 3 cavities.
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and-downstreamcavities. Thesevariations, which correspondto data gatheredin the
measurementwindowsshownin Figure VIII. 1, arenow reviewed.

Datafrom theupstreamcavity (ST3.5)revealthat thestatorpotentialfield penetrated
into thecavity. This directly causedflow propertiesto vary virtually sinusoidallyacross
a statorpitch. The penetrationof the statorpotential field into the upstreamcavity can
clearly be seenwith the staticpressurevariationsshownin FigureVIII.7. Here, static
pressuresacquiredwith a wedgeprobearedisplayedacrossone statorpitch from -10%
to 30% span. Note the circumferentialboundariesof the data did not correspondto
the actualleadingedgesof consecutivestatorblades. Instead,straightaxial projections
of statorleadingedgesare representedby the two thick lines. The statorpressureand
suction sidesarealso noted, indicating the flow was moving from left to right in the
tangentialdirection.Thedistributionsshow themaximumstaticpressurecoincidedwith
the leadingedgeof theblade,while theminimumoccurrednearmid-pitch(approximately
40% pitch from the suctionside).Thesevariationsextendedto -10% span,althoughthe
sinusoidalamplitudeat this locationwasabouthalf that of the powerstream.

The penetrationof the potential field into the upstreamcavity also influencedthe
pitchwisedistributionof velocity componentsthere.This canpartiallybeseenin Figure
VIII.8 which illustratesthe time meanradial, tangentialandaxial velocity components
acquiredwith a slanthotfilm probe. Note, thesedatacover the samespatialareaasthe
staticpressuredistributions.Perhapsthe mostinterestingfeaturein this datasetare the
radial velocitycharacteristics(FigureVIII.8a). At this axial location,theradial velocities
nearmid-pitchwerepositive,with a peakat 65%pitch from suctionside.Smallnegative
velocities were measuredin front of the blade down to -8% span. Negative radial
velocities (flow toward the hub) are denotedby dashedcontour lines. It appearsthat
seal-toothleakageenteredthe power streamnear mid-pitch but was suppressednear
the stagnationpoint regionaheadof the stator blade. One might at first questionthe
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Figure VIii.7 Variation of static pressure (Cps) acquired with a

wedge probe upstream of stator 3 and within the upstream cavity.
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validity of this conclusion, since the variations in radial velocity were quite small (at

-5.7% span the peak-to-trough modulation was only 2% of the tip speed). However, this

modulation represents a swing of flow pitch angle onto the probe of about 3.5 °, which

can be detected by the probe. So even if the absolute levels of radial velocity are off,

the delta increments are thought to represent the actual trend. Data presented in the next

two sections also support this conclusion.

Figure VIII.8b and c show a sharp reduction in tangential and axial velocity over

the entire pitch near 0% span. These reductions were also shown in Figures VIII.5

and VIII.4. Since large contour intervals were used in both plots, little circumferential

variation within the cavity can be detected. However, some variations did exist and

to better illustrate them the measured values from -5.7% span are shown in Figure

VIII.9. Here, a near sinusoidal variation in both velocities is depicted. For the tangential

component, the peak-to-trough modulation was approximately 4% of tip speed which is

comparable to the power stream value. For the axial component, the modulation was

much less (1.5% of tip speed); however, this is similar to that seen in the radial velocity

(2.0% of the speed). The tangential velocity distribution persisted to -10%, while the

axial velocity amplitude was reduced to near zero by -10% span.

Virtually no circumferential variations of total pressure were detected within the

upstream cavity. This is demonstrated by the near constant values of total pressure

across the pitch at --6% span in Figure VIII.10. Figure VIII.10 also shows the measured

static pressures at -5.7% span for comparison. The modulation in the total pressure was

only a quarter of the static pressure modulation. Since the stator potential field should

not influence the total pressure distribution for a steady uniform total pressure flow field,
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the slight variation in total pressurecould be attributedto the convectionof different
total pressurefluid or nonuniformtotal pressurelossproductionwithin the cavity.

As in the upstreamcavity, flow properties did vary circumferentially within
the downstreamcavity. Unlike the data from the upstreamcavity, no clear trends
were found or firm conclusionsdrawn from interrogationof downstreamcavity data.
Furthermore,most data taken with slow responseinstrumentationwere questioned
becauseof large unsteadyvelocity (flow angle) fluctuationsmeasuredthere by fast
responseinstrumentation(to bepresentedthe nextsection).Therefore,commentson the
downstreamcavity flow field are limited to a brief review of the time meanvelocities
acquiredwith a slant hotfilm probe. All threevelocity components(radial, tangential
and axial) aredisplayedin Figure VIII. 11. Thesemeasurements,gatheredat the axial
locationshownin Figure VIH.l, covera spatialrangeof onestatorpitch and40% span.
The bladewake suctionand pressuresidesarenoted in the axial velocity plot (Figure
VIII.1 lc) and positivetangentialvelocitiesare in the clockwisedirection.

The radial velocity distributions(Figure VIII. 1l a) againshow the most interesting
featureof the dataset.Flow wasmoving radially inward at all locations,but, on a time
meanbasis,fluid nearmid-passagewasmoving fasterinto the cavity (-5.5%tip speed)
thanwakefluid (lessthan-2.5% tip speed),thepositionof which is denotedby thelow
axial velocitiesin FigureVIII.1 lc. Thesecircumferentialvariationsdiminishedby -8%
span.The variationsfoundbetween5% and-5% spanarea curiousresult,and,like the
upstreamvariations,werenot expected.It is alsonoteworthyto mentionrelatively large
positive radial velocities (4% tip speed)were measuredin the hub wake at increased
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loading. Perhaps spanwise or secondary flows, setup in the passage, dictate which fluid

particles end up in the downstream cavity.

As mentioned, the axial velocities can be used to define the location of the blade

wake above 3% span. Below 3% span, the presence of the wake diminished (in terms of

low axial velocity) and instead the rapid velocity decrease in the radial direction was the

dominant gradient. The wake also had low tangential velocities (Figure VIII.1 lb), and

possibly the lower momentum wake fluid may have caused some of the circumferential

non-uniformity in tangential velocity between 1% and --4% span. Below -5%, these

variations diminished and an increase of tangential velocity with immersion (as displayed

in Figure VIII.5) occurred across the entire pitch.

Unsteady Velocities Correlated To Rotor Passing Frequency

Unsteadiness in the velocity components, corresponding to rotor passing frequency,

existed in both the up-and-downstream cavities. This was determined by analyzing

ensemble averaged velocities (averaged over all 39 rotor blades) acquired with fast

response slant hotfilm probes. Although measurements were taken at many locations

within the cavities, the trends to be noted were relatively independent of position,

and, therefore, only data collected at one spatial position are reviewed here. The

circumferential locations of the presented measurements, relative to the stator blade

hub profile, are shown in Figure VIII.12.

Ensemble averaged velocities acquired at -5.7% span in the upstream cavity (ST 3.5)

are depicted in Figure VIII. 13 across one rotor pitch. The trailing edge of the rotor blade

did not coincide with the once-per-rev trigger and instead is denoted by the solid vertical

line at 4% rotor pitch. The pressure side of the blade was to the left of the line. The

suction side was to the right. The radial and axial velocity traces reveal some temporal

I
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SS

-[-- downstream cavity

I

Figure VIII. 12 Circumferential location of presented unsteady deterministic velocities.
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variations,while the tangentialvelocity traceindicatesvirtually none. The modulation
magnitudesin axial andradial velocity arecomparableto those in the time meandata
acrossa stator pitch (FiguresVIII.8a and VIII.9). Slightly increasedradial velocities
existed near the trailing edge of the blade. This location also coincided with large
positiveradial velocitiesmeasuredin thepowerstreamwake.This suggeststheunsteady
power streamflow field did have some influenceon the cavity flow. The measured
fluctuationsrepresenta unsteadinessintensity(similar to turbulenceintensity) correlated
with rotor passingfrequency,definedby EquationVIII.2, of lessthan 1%. Note thatthis
unsteadinessintensitydoesnot includeany randomturbulentfluctuations,but represents
only the intensity of the averageunsteadyflow field causedby the rotor passing.

+v; +E
Un =

(VIII.2)

Ensemble averaged velocities acquired from -5.9% span in the downstream cavity

are shown in Figure VIII.14 across one rotor pitch. The leading edge of the fourth rotor

blade was also not in line with the once-per-rev trigger. Its position is denoted by the

solid vertical line at 87% pitch with the pressure and suction sides of the blade as given.

All velocity traces reveal substantial temporal variations. The sinusoidal distributions of

radial and tangential velocities were similar to the time mean velocities found across

the pitch in front of the stator (Figures VIII.8 and VIII.9). Radial velocity variations

indicate that more fluid was being force into the downstream cavity when the rotor

leading edge passed. Because of this and the sinusoidal nature of the distributions, it is
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proposedthat thepotential field, setupby the downstream fourth rotor blade, penetrated

into the downstream stator cavity and influenced the velocity components there. This is

exactly what occurred in the spatial distributions of time mean data in front of the third

stator, however, this trend, now seen in front of the fourth rotor, occurred in time and

not space because of the movement of the rotor relative to the stationary probe. These

unsteady velocity fluctuations produced an unsteadiness intensity of 11%, which, unlike

the upstream value, is quite high.

Further Flow Characteristics In The Upstream Cavity

Discussions of cavity flow field characteristics are concluded by examining some

axial variations of flow found within the upstream cavity. Further measurements in

the downstream cavity were not even attempted because of the large unsteady velocity

fluctuations observed there. A calibrated (slow response) five-hole probe was used to

measure the total pressure, static pressure and velocity components across a substantial

portion of the upstream cavity gap in both radial (0% to -10% span) and axial (17%

to 84% axial gap) extent. Two circumferential measurement locations relative to the

stator blade hub profile and the meridional grid in which data were acquired are shown

in Figure VIII.15. Yawing the probe head, while the probe stem was fixed at the axial

measurement location shown in Figure VIII.l, allowed the entire axial distance to be

traversed without having to physically reposition the probe stem to a new axial location.
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Figure VIII.14 Velocity variations across one rotor pitch in the downstream cavity.
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Yawing the probe also created a non-nulled yaw alignment and, therefore, the probe was

calibrated in both the pitch and yaw directions. While gathering data at different yaw

locations, the position of the stator relative to the probe was adjusted to account for any

slight deviation from the prescribed circumferential measurement location. Corrections

were made during data reduction to account for significant flow property gradients in

the radial direction.

Some axial variance in the flow existed at both circumferential locations. This is

illustrated in Figures VIII. 16 and VIII.17. Here, meridional distributions of total pressure

and all three velocity components are presented across most of the axial gap and for 10%

of the span. Static pressure distributions have been omitted, since only small variations

were detected. The plots in Figure VIII.16 correspond to measurements collected near

the stator mid-pitch (position A), while those in Figure VIII.17 were gathered near the

stator leading edge (position B). Note the shaded triangles in the figures represent data

which were outside the calibration range of the probe.

In general, the data at both positions (A and B) exhibited similar trends. As previously

noted, above -3% span large gradients of total pressure, axial velocity and tangential

velocity existed in the radial direction. Below -3%, the data reveal that the total pressure

and tangential velocity levels were higher toward the stator foot-ring (past 50% axial

gap), while the radial velocities were positive close to the rotor land and negative close

to the stator foot-ring.

Although data from positions A and B exhibited similar trends, some subtle

differences did exist. Below -3% span and across the entire axial gap, tangential velocities

were lower in front of the stator leading edge than at mid-pitch. Likewise, axial velocities

were lower in front of the stator leading edge than at mid-pitch. Both of these trends
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rotor hub land _kH+I+H+b_
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upstream cavity ----'

Figure VIII.15 Circumferential positions and meridional grid

where five-hole data was gathered in the upstream cavity.
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match those seen in Figure VIII.9, although the absolute levels between the two data sets

were different. The radial velocities measured by the five-hole probe also indicate that

the flow near the stator leading edge was moving more radially inward than that near

mid-pitch. This was also shown in Figure VllI.8a, although, once again, the absolute

levels between the two measurement techniques were different. The largest discrepancies

in radial velocity between hotfilm and five-hole probe data occurred between 0% and

-2% span. This is not surprising since large radial gradients in flow properties occurred

there. These gradients directly affected the spatial resolution of the five-hole probe and

even though corrections were made during data reduction to account for them, it is
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still unknown how a shear layer influences measurements acquired with five-hole type

probes. To complicate matters, hotfilm measurements may have also been influenced

in this region because of the normally high random turbulence intensity associated with

shear layer flows. Therefore, the point is made that only the trends seen by the two

measurement techniques are similar and not the absolute quantities.

It was previously surmised that a vortical flow structure existed in the meridional

plane of the upstream cavity. The five-hole probe data prove this to be true. This can

be inferred from the data already presented, but it is better visualized by reproducing

the meridional velocity vectors as illustrated in Figure VII/. 18. Mid-stator-pitch data are
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presentedin FigureVIII. 18a,while thosecollectedin front of the statorleadingedgeare
showninFigureVIII. 18b.Theshadedcircle representstheprobetip diameterto scaleand
thepowerstreamflow was from left to right. A vortical flow structure,similar to what
would be producedby a driven cavity, was presentat both circumferentiallocations.
The influenceof the stator leading edgeon the radial velocities below the foot-ring
leadingedgeis apparent.Thepositionof the centerof the vortical flow structureseemed
to be influencedby where the stator leading edgewas, being closer to mid-gap and
higherspanwhen the leadingedgewasclosethan for mid-pitch. The presenceof this
vortical structurewas at first questioned.However,numerical calculationsperformed
by Heideggeret a1.[22] for a high-speed compressor support these observed trends.

Therefore, it is now thought to be an actual feature of the flow field within the cavities.

Finally, it is important to restate that all of the trends presented in this chapter,

corresponding to the baseline configuration near peak efficiency operation, were also

detected at increased loading. Furthermore, pneumatic data acquired with kiel, wedge

and five-hole probes for the other three cases with seal-tooth leakage and shrouded stator

cavities showed similar cavity flow field characteristics.
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CHAPTER IX

CONCLUSIONS

Experiments were performed on a multistage axial-flow compressor to assess the

effects of shrouded stator cavity flows on overall compressor and stage aerodynamic

performance. Other measurements were acquired to determine spatial and temporal flow

field variations within up-and-downstream cavities. The data presented and conclusions

drawn will help compressor designers wanting to include the influence of shrouded stator

cavity flows in the design of multistage compressors and to engineers wanting to better

understand the characteristics of the cavity flow field.

Results conclusively show that increasing labyrinth seal-tooth leakage degraded

compressor performance. For every 1% increase in the seal-tooth clearance to blade-

height ratio the compressor pressure rise dropped as much as 3% while efficiency was

reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable

to those commonly reported for rotor and cantilevered stator tip clearance variations.

Therefore, it appears that it is equally important to account for the effects of seal-tooth

leakage as it is to include the influence of tip clearance flows in correctly predicting

overall performance.

Shrouded stator cavities alone without any leakage probably have little impact

on compressor performance. Some performance improvement did occur when solid

foot-ring extensions were installed in the test rig to conceal the cavities. However,

this improvement correlated well with the further reduction in leakage flow caused by

concealing the cavities. Concealing the cavities simply reduced the seal-tooth leakage to

near zero with expected improved performance.

Importantly, neither concealing the cavities nor changing the amount of seal-tooth

leakage altered the stalling flow coefficient of this compressor.

The overall performance degradation, observed when leakage was increased, was

brought about in two distinct ways, both related to a weakened hub endwall flow.

First, increasing seal-tooth leakage directly degraded the performance of the stator row

in which leakage occurred. The recirculation of more low momentum leakage fluid

produced additional flow blockage, deviation and total pressure loss near the stator hub

endwall. The extra blockage forced more fluid radially outward toward the case, thereby

substantially unloading a significant spanwise portion of the stator. Second, the altered

stator exit flow conditions, caused by increased leakage, impaired the performance of the

next downstream stage. The redistribution of stator exit flow caused the next downstream

rotor to work less over the outer portion of the span, while near the hub the work input

remained the same, thereby reducing overall pressure rise. Furthermore, the downstream
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rotor did not tend to "heal" themaldistributedincomingflow nearthe hub andthe flow
distributionsinto thenext statorwere alsomodified(mainly higherincidenceanglesnear
the hub). This worsenedthe performanceof that downstreamstatorby increasingflow
blockage,deviationand total pressureloss.

This double impact caused,in this compressor,the performanceof downstream
stagesto becomeprogressivelyworse when seal-toothclearanceswhere increased
simultaneouslyon all four stages.Of the total pressurerise reductionof an embedded
stage,approximately40% of it was causedsimply by the extra leakagein that stage
while50%wasattributedto the incomingflow conditionsworsenedby upstreamleakage.
The total amountof blockageand total pressurelossproducedin the third statorwhen
all seal-toothclearanceswhereincreasedsimultaneouslywasalsoaffectedby thesetwo
factors. Nearly 65% of the extra blockageand 60% of the extra total pressureloss
was causedsolely by the increasein third stageleakage.The rest was attributedto
worseninginlet flow conditionsinto thethird statorcausedby upstreamleakage.From
theseconclusionsit becomesapparentthat a designermay not only have to account
for the influenceof seal-toothleakagein the designof the statorrow in which leakage
occursbut also in all downstreamblade rows as well.

Flow within the cavities primarily involved low momentumfluid traveling in the
circumferentialdirectionat about40% of the hub wheel speed.Measurementsindicate
thattheflow within bothcavitieswasmuchmorecomplexthanwhatwasfirst envisioned.
Spatial and temporalvariationsin flow propertiesdid exist. Someof thesevariations
were due to the upstreampotential flow field influenceof the next downstreamblade
row, while other variationswere causedsimply by flow over a recessedcavity. The
presenceof thepotentialflow field, generatedby eithera rotoror statorblade,in general
forced fluid down into thecavity. In the upstreamcavity, inward radial velocitieswere
presentnearly in line with the statorbladeleadingedgewhile outwardradial velocities
existednearmid-stator-pitch.This produceda circumferentialvariancein the entrance
of seal-toothleakageflow into the power stream. In the downstreamcavity, inward
radial velocitieswerepresentacrossthe entire pitch; however,substantiallymore fluid
went radially inwardnearthe rotor leadingedgethan at mid-rotor-pitch. The upstream
potential flow influenceof the downstreamrotor also causedthe velocity unsteadiness
within the downstreamcavity to be much greater than in the upstreamcavity. The
actionof flow overrecessedcavity produceda vortical flow structurein the meridional
planewithin the upstreamcavity, similar to whatwould be found in a driven cavity. In
the upstreamcavity this structurewaspresentboth in front of the stator leadingedge
and nearmid-pitch and is believedto be acrossthe entire stator pitch. Modeling this
three-dimensionalunsteadyflow remainsa challenge.
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CHAPTER X

RECOMMENDATIONSFOR FUTURE RESEARCH

The experimentsreportedhereinhave proven that seal-toothleakageaffectedthe
performanceof this compressor.Although believedto be a generaltendencyfor most
compressors,this conclusionhas not been generallyproven. It would be beneficial
to repeatsimilar experimentswith different compressorblading designsto assessthe
generality of seal-tooth leakageinfluence on compressorperformance. Particularly,
studieson bladingwhich are lessloadednearthe hub wouldbe useful.The loadingon
the currentbladescould, perhaps,be alteredby changingthe inlet axial velocity profile
into thecompressor.More datacouldbenefitdesignerswantingto know the generalities
of the observedtrends.

Future studiesshould be carried out to better evaluatehow or if the presence
of shroudedstator cavities alone influence compressorperformance. In this study,
concealingthe cavitiesdid not alter performanceto anextent that the influenceof the
cavities alonecould be assessed.Still, it hasbeena long standingbelief that cavities
can increasethe stalling flow coefficient,especiallywith inlet circumferentialdistortion.
An investigationto specificallyaddressthis notionwould beusefulto designerswanting
to better predict the stall point of a compressor.

Some middle stages of multistage compressorsinvolve variable stator blade
geometries.Becauseof this, clearancebetweenthestatorbladehub andannularfoot-ring
may exist in productionengines.The experimentsin this studywere conductedwith
all statorblade hub clearancessealed.Therefore,a separatestudyto investigatehow
this endwallclearanceflow may impacttheeffectson compressorperformanceobserved
when seal-toothleakageflow existswould also be useful.

More data which clarify the axial variationsin flow within the downstreamcavity
shouldbe gathered.Unfortunately,it is felt this would haveto be acquiredwith time
consumingfast responseinstrumentationbecauseof the largefluctuations in the flow
field therecausedby the passingof the downstreamrotor blades.

The data collected in this study shouldbe usedto improve modelswhich try to
incorporatethe influenceof shroudedstatorcavity flows in compressordesign.Currently,
a simplecontrol volume approachto predict the increasein total pressureloss,which
occurredwith more seal-toothleakage,is being evaluated.Design throughflow codes
which alreadyutilize an existingshroudedstatorcavity flow modelcould becalibrated
againstthis data. A methodwhich accuratelymodelsthe essentialspatialandtemporal
variationsof a cavity flow field for establishingCFD boundaryconditionsneedsto be
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developed. This would allow designers using CFD codes to incorporate the influence of

shrouded stator cavity flows without having to grid the entire shrouded stator cavity.
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APPENDIX A

UNCERTAINTY ANALYSIS

An analysiswas conductedto estimatethe uncertaintyof the calculated overall,

individual stage and blade element performance parameters. The analysis used

propagation of error techniques as described in Colemann and Steele [23]. Error

estimates of data collected with five-hole and hotfilm probes have been omitted since

these measurements were used mainly for qualitative purposes. Details of the analysis

and results for both First-Order and Nth-Order uncertainties are presented.

First-Order uncertainties refer to precision errors. The propagation process accounted

for errors which were random as the experiment was conducted and predicts the amount

of scatter which would result from repeated trials using the same test apparatus and

instruments. For precision errors, the uncertainty of a dependent variable (rfp) is given

by Equation A.1. Here, Zl,Z2...zi are the independent variables and 6xi refers to the

known uncertainty associated with the independent variable zi. Independent variable

uncertainty values were obtained by taking twice the standard deviation of 30 measured

samples while at the design point operating condition.

£f' = [_/z/ J (A.1)
i=1

+ _ Ozi
j=l

1/2

(A.2)

_f = (3f_ + 6f_) a/2 (A.3)

Nth-Order estimates of uncertainty include the precision errors together with all the

bias errors which influenced the measurements. Precision errors were taken from the

First-Order estimates. The bias uncertainty of a dependent variable (_fb) was calculated

with Equation A.2, which accounts for correlated bias limits. Again, Zl,X2...xi are

the independent variables and 6zi refers to the known uncertainty associated with the

independent variable zi. Bias limits were obtained from Blumenthal [24] or better

judgement. If bias limits were dependent, they were assumed perfectly correlated

(Oij = 1). The Kronecker delta (rij) was zero when i = j and one when i # j.

The Nth-Order uncertainty estimate was found by taking the root sum square of bias

and precision errors (Equation A.3).
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Overall PerformanceUncertainties

Overall performanceparametersincludedthe flow coefficient, pressurerise coeffi-
cient, total-to-staticpressurecoefficient,work coefficient and efficiency. All of these
valuesweredeterminedfrom measuredvaluesof temperature,pressure,rotationalspeed
andshafttorque.The functionaldependenciesare listed in EquationsA.4-A.8.

po T ° Trip, w, /kpmf , Cd) (A.4)¢ = fl( ,'el, ref,

= po T °_bt/4 f2( ref, ref, Tdp, _, PI.O, Ps.o) (A.5)

_,t_14 = f3(Pfs, TfS, Tdp, w, P_.o)

p O o¢/4 = f4( Tel, Trey, Trip, w, /kpmf, Cd, Tq)

(A.6)

(A.7)

= po T °71 fs( ,'el, ,'el, Trip, oa, Apm.t , Cd, Tq, /:'1.0, Ps.0) (A.8)

The overall performance parameters were then functions of nine independent

variables: reference total pressure and temperature, dew point temperature, rotational

speed, massflow differential pressure, discharge coefficient, measured torque, and the

static pressures at Stations 1.0 and 5.0. Uncertainties of these independent variables are

listed in Table A. 1. Using these values, the jitter technique [25,26] was used to estimate

the uncertainties in the overall performance parameters.

The relative First-Order and Nth-Order uncertainties (Figures A.1 and A.2 respec-

tively) for each parameter are plotted for a wide range of compressor operation at design

speed. Design point values are listed in Table A.2. When acquiring data, the desired

operating condition was set by adjusting the flow coefficient. Figure A. 1 indicates the

precision error in flow coefficient was quit small (6¢ < 0.2%). This lead to adequate

repeatability when setting the desired operating condition during testing. Efficiency

and work coefficient uncertainties were rather high because of an inability to measure

the running and tare torque values adequately. When viewing the measured data it is

important to remember that the First-Order uncertainties should be used when comparing

differences due to configuration changes. Nth-Order uncertainties should be used when

trying to state the absolute levels of the parameters.
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Table A. 1 Independent variable uncertainties for the overall performance parameters.

Independent

Variable

f
 r¢,f
,_Tep

Precision

Uncertianty

Value

Bias

Uncertianty

Value

0.0010 psi 0.0048 psi

0.20 R 3.325 R

0.066 R 1.0 R

6w 0.45 rpm 0.50 rpm

_/kpm f 0.00015 psi 0.00025 psi

Ca - 0.003

_STq 23.0 in-lbf 43.0 in-lbf

(_PI.o 0.0004 psi 0.0048 psi

_P5.o 0.0017 psi 0.0048 psi

Table A.2 Overall performance uncertainties at design point operation.

First-Order Nth-Order

Dependent Uncertianty Uncertianty
Variable

Value Value

64_/ff 0.14 % 0.41%

_¢,//.4,/ 0.28 % 0.69 %

6_b_s / _bts 0.35 % 0.72 %

_5_ / ¢, 0.55 % 1.20 %

6r//r/ 0.61% 1.32 %
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Individual Stage Performance Uncertainties

Stage pressure rise coefficients were calculated from measured values of reference

total pressure and temperature, dew point temperature, rotational speed and the static

pressures into and out of the stage as shown in Equation A.9. Here, Pin,i and Pout,i

correspond to the proper inlet and outlet static pressures for each stage. Uncertainties of

these independent variables are listed in Table A.3. These values were used to estimate

the uncertainties in the stage performance parameters using the jitter technique [25,26].

= po T ° Pin,i, Pout,i) (A.9)

Results for the First-Order and Nth-Order uncertainties are shown in Figures A.3

and A.4, respectively. Uncertainties for each pressure rise coefficient are plotted for the

range of compressor operation at design speed. Many of the bias limits were correlated

and caused the Nth-Order uncertainties to be similar to the First-Order uncertainties. The

higher stage pressure rise errors, compared to overall values, were caused primarily by

the smaller pressure difference across a stage when compared to the entire compressor.

Table A.3 Independent variable uncertainties

for individual stage performance parameters.

Independent

Variable

 Tf ,f
_T_p

Precision

Uncertianty

Value

0.0010 psi

0.20 R

0.066 R

Bias

Uncertianty

Value

0.0009 psi

0.0048 psi

3.325 R

1.0 R

£_ 0.45 rpm 0.50 rpm

£Pa.o 0.0004 psi 0.0048 psi

_P2.o 0.0048 psi

c_P3.o 0.0015 psi 0.0048 psi

8P4.o 0.0018 psi 0.0048 psi

3Ps.o 0.0017 psi 0.0048 psi
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Blade Element Performance Uncertainties

It was truly difficult to assess the uncertainty errors associated with the blade element

performance parameters. The following section attempts to summarize the results of the

analysis performed. To begin the analysis, estimates on the uncertainties of the measured

flow angle and the normalized total and static pressure coefficients were made, since

all blade element parameters were calculated from these values. Next, errors associated

with velocities and total pressure loss at a single point in space were found. Then, the

uncertainties of the circumferential averaged flow properties were assessed. Finally, these

were used to calculated the blade element performance errors. It must be noted that this

uncertainty estimate does not fully account for the errors in the pneumatic measurements

due to unsteadiness, since the ability of pneumatic probes to accurately measure the

steady state pressures in an unsteady environment is unknown.

Local total and static pressure coefficients were determined from the measured values

of reference pressure and density, probe pressure and rotational speed. Uncertainties of

these independent variables are listed in Table A.4. These values were used, along with

appropriate partial derivatives, to calculate the precision and bias uncertainties in the

pressure coefficients (Equations A.10 and A.11). Results are shown in Table A.5. To

give a single value of 6Cpt and 8Cp, typical third stage pressure values were used

when calculating the difference between the probe pressure and the reference pressure.

Furthermore, the density and tip speed were considered to be the standard day condition

and design speed values, respectively.

,Cp_ [t_P2.+_._Pr2f ('Pref_ 2 ( ,_)2])p = L(P- P,<s)+ ,' + 2

7b-- L 2 + \ p,.s /

1/2

(A.lO)

(A.I I)

The uncertainty estimates in the measured flow angle are also presented in Table A.5.

The precision errors were determined from twice the standard deviation of 30 measured

points, while the bias limit was taken as twice the average difference between hotfilm

and wedge probe measurements traversing the entire stator exit passage.

For data reduction, absolute velocities were calculated with the isentropic compress-

ible flow relations. However, for the uncertainty analysis, incompressible flow was

assumed. The assumption of incompressible flow made the analysis much easier with

little loss in accuracy. The normalized absolute velocity was estimated by Equation A. 12.

The relative errors in normalized velocity were found from equations A.13 and A.14.

These functions (absolute levels of the pressure coefficients were assumed to be unity)
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Table A.4 Independent variable uncertainties for normalized total and static pressures.

Independent

Variable

Precision Uncertianty

Value

0.0010 psi

0.09 x 10-Sslug/ft 3

Bias Uncertianty

Value

0.0048 psi

1.5 x 10Sslug/ft 3

6w 0.45 rpm 0.50 rpm

6P_ 0.0012 psi 0.0048 psi

6P 0.0016 psi 0.0066 psi

Table A.5 Uncertainties for normalized total and static pressures and flow angle.

Precision Bias Nth-Order

Dependent Uncertianty Uncertianty Uncertianty
Variable

Value Value Value

_5Cpt / C pt 0.0057 0.0063 0.0085

6Cp/Cp 0.0065 0.0081 0.0104

_fl 0.2 ° 1.5 ° 1.5 °

are also shown in Figure A.5 for the range of velocities encountered in the compressor.

Noted in Figure A.5 are typical mid-span stator inlet and exit velocity levels.

"W

-- = x,/Cpt - Cp (A. 12)
Utip

_,,'"_ (t_Op 2 + t_Op2) 1/2

_.,"J. p 2(WUtip) 2
(A.13)

_51,"_ = (6Cp_ + _Cp 2- 26CptcJCp) 1/2

I_] b 2(y/v.p) 2
(A.14)

The axial and tangential components of velocities were calculated by taking the

known absolute velocity level and multiplying it by the correct flow angle trigonometric

function. The errors in these components were approximated by Equations A.15 and

A.16. The first term in these equations represents the error in absolute velocity and was

brought about because of self-similar triangles. The second term was simply the error due

to the uncertainty in the measured flow angle. The second term is an order of magnitude

smaller than the first term except for flow angles very near to 0 ° and 90 °, therefore, to a
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goodapproximationtheuncertaintiesin axial andtangentialvelocitiesmaybecalculated
from the alreadyknown uncertaintyin the absolutevelocity magnitude.

= + tan2/36/32 SV
V_] p,b _ V

vo ] p,b + t_-_ # -Y

(A.15)

(A. 16)

Most of the axisymmetric blade element performance parameters were calculated

from these known velocities. Therefore, the uncertainties of axisymmetric parameters

could be obtain from the known uncertainties in absolute, axial and tangential velocity.

The stator loss coefficient is the only parameter which utilizes uncertainties not already

given. Loss at a point in the flow field was defined by Equation A. 17. The errors in

the loss were then given by Equations A. 18 and A. 19. For the experiments, the loss in

total pressure, P1° - P_, was measured with a very accurate differential transducer, with

a precision error of 0.00015 psi and a bias error of 0.00025 psi. Using these uncertainty

values along with those already noted for total and static pressure coefficients, the

uncertainties in total pressure loss coefficient were estimated for a two conditions and

are shown in Figure A.6.

w - P_ - P_ = AI'2Cpt (A.17)
P_ - P_ Cpt,_ - Cpa

--d- p = \ /_l,2Cpt + (Cp,,I - Cpl

1/2

_-_) [(6(AI'2Cpt)) 2 6Cp2 +6CpZ-26Cpt6Cp -b = \ _I_2Cpt + (Cpt,1 - Cpl) 2

1/2

(A. 18)

(A. 19)

The flow property errors, at one spatial position in the flow field, were used to estimate

the uncertainties in the axisymmetric blade element performance parameters. It must be

stated that these final calculations are, at best, estimates. From the previous results it is

apparent that the flow property uncertainties vary greatly with velocity magnitude, flow

angle and pressure level. This implies that property uncertainties varied greatly in the

spanwise and pitchwise directions at one measurement station, not to mention throughout

the entire compressor. To further complicate matters, axisymmetric values were obtained

by averaging across one stator pitch. All of these problems created difficulty when trying

to define an upper limit to the uncertainty estimates.
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FigureA.7 Calculatedbladeelementperformanceerrorsfor mid-spanflow conditions.

Variable

6vIv

 Vz/Vz

/ve

First-Order

Uncertainty

Value

1.2 %

1.5 %

1.5 %

Bias

Uncertainty

Value

0.5 %

2.5 %

2.5 %

Nth-Order

Uncertainty

Value

1.3 %

3.0 %

3.0 %

0.35 1.30 1.34

A/3 0.45 1.85 1.90

_SDF/DF 2.0 % 4.0 % 5.0 %

_Sw/a2 0.5 % 2.0 % 2.1%

_Swp/wp 1.7 % 5.5 % 6.0 %

To obtain single valued uncertainty quantities, a single pitchwise survey, which

contained nominal flow conditions, was analyzed. The data corresponded to the third

stage increased loading mid-span measurements for the baseline configuration. First-

Order (precision) uncertainties were calculated from Equation A.1. These errors were

random and, therefore, profited from the beneficial effect of averaging. Bias uncertainties

were taken as the mean bias uncertainty value across the stator pitch. Since biases are

fixed errors, they were not affected by averaging. Results from this analysis are presented

in Table A.7. Values are recorded as percentages where appropriate. Only uncertainty

quantities corresponding to the absolute frame are presented; however, the respective

counterparts in the relative frame were also well approximated by the values in Table

A.7.
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APPENDIX B

PROBE CALIBRATION AND REDUCTION TECHNIQUES

This appendix contains supplementary information on the calibration methods and

data reduction techniques for pneumatic and hotfilm probes. Brief descriptions of the

probes are also included. The pneumatic probes used in the experiments included kiel,

wedge and five-hole types. Five-hole probe calibration techniques used in this thesis

closely follow the methods developed by Everett et al. [27] Hotfilm calibration techniques

followed the methods developed by Degrand and Kool [28] but are not reviewed here.

The reader is referred to these references for further details.

Probe Calibration Facility

The facility used for the calibration of aerodynamic and hotfilm probes is illustrated in

Figure B. 1. The rig was designed for convenient access. With it, the accurate calibration

of measurement probes was possible. The facility consisted of a flow conditioning

section, contraction nozzle, calibration exhaust jet and an exhaust diverter.

Flow conditioning section

The flow conditioning section provided a uniform low turbulence intensity free-stream

flow field. Pressurized shop air was used as the flow driving mechanism. Mach numbers

up to 0.95 were attainable. The flow rate was controlled by a gate valve. A Cuno filter

retained foreign particles from continuing downstream. A perforated steel cone mixed

the flow. A two inch wide honeycomb mesh reduced large eddies into small eddies

and a fine mesh screen eliminated any local nonuniformities created by the honeycomb

mesh. Plenum total pressure was measured by a Pitot probe positioned downstream of

the screen. The jet static pressure was assumed to be the test cell atmospheric pressure.

The exit contraction nozzle, with an exit diameter of 3.80 cm and an area contraction

ratio of 28 to 1, uniformly accelerated the flow such that no measurable centerline losses

occurred between the measured plenum total pressure and the calibration point.

Calibration point

The calibration point was located 2.54 cm away from the contraction exit and in

the center of the exhaust jet. Figure B.2 indicates the jet core had a uniform total

pressure distribution for a large range of Mach numbers. Rotations in the pitch and

yaw directions could occur without repositioning the calibration point. Pitching motion

was electronically controlled by an L.C. Smith actuator connected to a lever arm. This

assembly required a calibration of the pitch angle to actuator step position. The curve

which correlates the pitch angle to actuator step position is given in Equation B.1. The
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varianceon the forth order fit was0.1068. Yawing motion was adjustedby the L.C.
Smith actuator in which the probewas mounted.

Sstep --a0 -q-alo_ + a2(22 -1- a3o_3 -q- a4(24

a0 = 0.482884 × 103

al = -0.165604 × 102

a2 = 0.161018 × 10 -1

a3 = 0.110516 × 10 -2

a4 = 0.207685 × 10 -4

(B.1)

Kiel Probe

Miniaturized kiel probes were used to measure total pressures in the compressor. A

scale drawing of a kiel probe is shown in Figure B.3. The probe was constructed of

silver brazed stainless steel tubes. The measurement tube was 0.254 mm in diameter

and was shielded with a 1.65 mm diameter hypodermic tube approximately 3.2 mm

in length. The opening of the tubes were normal to their centerlines. The shield was

chamfered 45 ° on the leading edge.

Kiel probes were not calibrated; however, measurement characteristics were checked

to ensure each probe read the correct total pressure over a wide range of flow angles.

To check the measurement characteristics, probes were positioned in the center of the

jet flow field produced by the calibration facility. The probe was automatically pitched

Figure B.3 Pictorial of a miniature kiel probe.
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and yawed while recording the measured pressure (Pi). The jet total pressure (P°)

was measured by a Pitot tube, shown in Figure B.1, and jet static pressure (P) was

assumed to be the test-cell atmospheric pressure. Pressure coefficients were calculated

as in Equation B.2.

P_ - P
Cpi = (B.2)

po _ p

Typical errors in the measured total pressure coefficients are shown in Figure B.4.

Here, the error in total pressure is plotted against the probe yaw angle for three pitch

angles. The shaded region represents the uncertainty band due to the precision errors

in the pressure transducers. Kiel probes usually had a +40 ° range in which the total

pressure was measured correctly. Probes which gave pressure measurements far outside

the uncertainty band or had erratic behavior when pitched or yawed were discarded and

used as javelins.

Wedge Probe

Wedge probes were used to measure static pressures and flow angles in the

compressor. A scale drawing of a wedge probe is shown in Figure B.5. The included

wedge angle was 18 °. The wedge portion of the probe was approximately 1.52 cm in

length. The two side ports (0.4 mm diameter) were located along the probe stem centerline

but offset radially by 1.3 mm. The ports were drilled normal to their respective side.

Encased hypodermic tubes conveyed the side port pressures up the probe stem.
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Figure B.4 Measurement characteristics of a miniature kiel probe.
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Wedgeprobeswerecalibratedandtheir measurementcharacteristicswerechecked.
To checkthemeasurementcharacteristics,probeswerepositionedin the centerof the jet
flow field producedbythecalibrationfacility. Pressuresweremeasuredoverawiderange
of pitch andyawangles.The zeroyawpositionwas foundby nulling the probeuntil the
sideport pressureswereequal. Pressurecoefficientswerecalculatedas in EquationB.3
for eachport. As with kiel probes,the jet total pressurewasmeasuredby a Pitot tube,
shownin FigureB.1, andjet static pressurewasthe test-cellatmosphericpressure.

Pi - P

Cpi - po _ p (B.3)

Common characteristics of side port pressure measurements are shown in Figure

B.6. Both side port pressures (Cpa and Cp2) are plotted against the probe yaw angle for

three pitch angles. The discontinuity near _+10° was common among all wedge probes

tested and was believed to be caused by the flow separating off the leading edge of

the wedge. Probes which had wildly erratic behavior when pitched or yawed or had

difficultly auto-nulling were discarded. Errors in the static pressure coefficient (Equation

B.4) are shown in Figure B.7. The shaded region represents the uncertainty band due

to the precision errors in the pressure transducers. Large errors in static pressure were

present and depended greatly on the pitch angle and yaw angle of the probe.

Cpl + Cp2
Cps - (B.4)
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Figure B.5 Pictorial of a wedge probe.
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Figure B.6 Side port pressures of a wedge probe.
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Since the wedge probe incorrectly measured the static pressure, a calibration was

performed in an attempt to correct the error. The calibration accounted for "wall

proximity" effects and scaled with the local dynamic head approaching the probe. Wall

proximity effects are common when using wedge type probes and have been documented

many times, most recently by Smout and Ivey [29]. The effect forces non-constant

calibration coefficients to be used across the span. The influence of yaw and pitch angle

were ignored, since the wedge probe was used in an auto-nulling mode, and pitch angle

variations were considered small in the compressor flow field.

The calibration was performed in the LSAC ahead of the inlet-guide vanes instead

of the calibration facility. Here, the flow was nearly in the axial direction across the

entire span. Boundary layer thicknesses were approximately 30% of the span at both the

hub and case. Both wedge and kiel probes were traversed across the span at different

through-flow rates. The kiel probe measured the local total pressure while the wedge

probe gave an estimate of the local static pressure. The true static pressure was assumed

to vary linearly across the span, with the end points being set by the measured hub and

case static pressures. From these measurements a relation between the true and measured

local static pressure was determined.

The calibration used the pressure coefficient defined in Equation B.5. After viewing

the recorded data it was found the pressure coefficient could be approximated to be

linear with respect to the radial position for a portion of the span and constant across

the rest of the span. Hence the pressure coefficient was represented by Equation B.6,

where a was the calibration constant and ra corresponded to the radius were the linear

variation stopped. The calibration constants were determined from a least-squares fit to

the measured data.

2P - (P1 +/:'2) (B.5)
Cp_(r) = 2po_ (P1 + 1:'2)

i ¢t .Cpc( ) = a
ra < r < rtip

r < ra (B.6)

Wedge probe calibration data are depicted in Figure B.8. Here the pressure coefficient

is plotted against the span for three different flow rates. The measured data are given by

symbols, the calibration fit is denoted by the thick line while the standard deviation to

the calibration fit is represented by the dashed lines. Although not perfect, the calibration

gives reasonable estimates to the static pressure across the span. Standard deviations

were below 1.5% with maximum deviations usually not larger than 3.0%.

Local static pressures in the compressor were found by employing Equation B.7,

where the pressure coefficient (Cpc) was dependent on probe location and the total
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pressure was measured with a kiel probe.

p_ PI + P2 ( P1+ P2 )2 + Cpc po 2
(B.7)
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Figure B.8 Static pressure calibration of a wedge probe.

Five-Hole Probe

A drawing of the five-hole probe used is shown in Figure B.9. The probe axes and

nomenclature assigned to the individual openings are also presented. The probe was

constructed of five silver brazed stainless steel tubes, each having an inside diameter of

0.056 cm. The opening of the center tube was normal to its centerline. The openings

of the four outer tubes were inclined 45 ° to their centerlines. This arrangement resulted

in yawing and pitching symmetry.

Non-yaw-nulling calibration and reduction techniques were used. This method

permitted the unknown flow conditions within the test flow field to be found without

the need for the probe to be nulled in the yaw direction. The flow conditions were

determined from measured probe pressures and the calibration coefficients.

The non-yaw-nulled five-hole probe calibration empirically determined the rela-

tionships between the flow conditions (po, p, ac and _c) and the five measured

pressures of the probe (P1,'", P5). The pressures measured during probe calibration
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were nondimensionalizedas indicatedin EquationB.8.

Pi- P

Cpi = po _ p (B.8)

The pressure coefficients were dependent on Mach number, M, Reynolds number,

Re, specific heat ratio, 7, the measured pitch angle, ac, and the measured yaw angle,

3c. Reynolds number, specific heat ratio and Mach number were removed from the list

of independent variables since these values did not change significantly during testing.

Pitch and yaw angles were then the independent calibration variables.

The calibration was accomplished by varying pitch angle and yaw angle while

measuring the probe pressures. The probe openings were positioned near the center of

the jet flow field produced by the calibration facility. Prior to calibration the zero yaw

position was found by nulling the probe in the jet flow until the two side ports equaled.

Total pressure was measured by the Pitot tube, shown in Figure B.1. Static pressure

was the test-cell atmospheric pressure. Typical pressure coefficient data are shown in

Figure B. 10. Here the five coefficients are plotted against the measured pitch angle, ac,

and measured yaw angle, 3c.

Taylor series expansions were used to approximate the relationships between the

flow conditions and the measured pressures. Four flow conditions were expanded: pitch

angle, yaw angle, total pressure coefficient (Equation B.9) and dynamic head coefficient

Z

T
Z_ J
\ _x

I
t

Figure B.9 Pictorial of the five-hole probe.
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(Equation B. 10).

Cp5 - 1
(B.9)

Cpt = Cps - Cp.vg

1
= (B.10)

Cpq Cp5 - Cpavg

An approximation to a general flow condition is given in Equation B.11. Here a

general flow condition is given as an expansion of the pitch pressure coefficient (Cpo,)

and the yaw pressure coefficient (Cp#). These coefficients are defined in Equations

B.12 and B.13. The subscript i identifies the equation as representing the value of the

flow property measured for the ith data point. Fifth-order approximations were used.

Therefore, 21 calibration coefficients for each flow condition variable were calculated.

gi(Cpo,,Cpz) =(al+

a2Cpa + a3Cp_+

a4Cp_ + a5Cpo_Cp_ + a6Cp2#+

aTCp 3 + asCp_Cpz + a9CpaCp_ + a9Cp3_ ...)i

(B.11)

Cpl - Cp3 (B.12)
Cpc_ = Cps - Cpavg

Cp2 - Cp4 (B. 13)
Cpz = Cp5 - Cpavg

Defining the vectors [g] and [a] and the matrix [M] enables a system of equations

(Equation B.14) to be abbreviated as Equation B.15. The I x 1 [g] vector contains values

of one of the four flow properties, the 1 x 21 [M] matrix contains the corresponding

expanded pressure coefficient variables and the 21 x 1 [a] vector contain the calibration

constants•

gl

g2

91-]

gl

1 Cpa2 Cp_2 Cpc_2Cp_ Cp5_2

1 cpo,_,CpB,_,
1 Cp_, Cp_, Cpo, zCp_, Cp_,

al

a2

a20

.a21.

(B.14)

[g] = [M][a] (B.15)
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Calibrationconstantswere determinedfrom a least-squares-curvefit to the experi-
mentaldata,asgivenin EquationB.16. Oncethe calibrationconstantsweredetermined,
the correspondingcurve fits were comparedto the known calibration data to ensure
properrepresentationsof theflow properties.Probeswerediscardedif theyhadirregular
calibrationbehaviorsor if the fifth orderexpansionswere unableto capturethe probes
measuredflow conditions.

[a] = [MTM]-atM]T[g] (B.16)
k J

The data reduction procedure resolved the local total pressure, static pressure and

velocity vector components from the measured probe pressures. The procedure began

by calculating the pitch and yaw pressure coefficients (Equations B.12 and B.13). From

these coefficients and the empirically derived calibration coefficients, each fitted flow

condition was found explicitly using the Taylor-series expansions (Equation B. 11). Pitch

and yaw angles were determined directly from the appropriate curve fit. Total and static

pressure coefficients were found from solving Equations B. 17 and B. 18.

Cp° = Cp5 - Cpt(Cp5 - Cpavg) (B.17)

Cp = Cp ° - Cpq(Cp5 - Cpavg) (B.18)

The reduction was completed by calculating the velocity components. For these

calculations the local Mach number was obtained from the isentropic compressible flow

relations using the corrected total and static pressure values. The velocity magnitude was

calculated using the definition of Mach number. It was assumed the total temperature

at the probe head equaled the standard day condition. Velocity components were then

found with Equations B.19-B.21. Here, the yaw offset (/30) was the absolute position

the probe was set at during the survey.

Vr = Vsina (B.19)

Vo = V c, cos (/3o- (B.20)

V, = Vcosa sin (/30 -/3) (B.21)
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